Story Transcript
Ejercicio 3 Lectura del Enunciado Solución
Geometría Anlítica (GA_tectas.lyx)[1/17]
Enunciado Considere el punto variable P = (x0 , y0 ) 6= (0, 0), perteneciente a una parábola de ecuación y 2 = 4px. Por el punto P = (x0 , y0 ), se traza una una tangente L a la parábola. La cual corta a los ejes OX y OY en los puntos A y B respectivamente. Asumiendo que la ecuación de una tangente a la parábola y 2 = 4px es L : yy0 = 2p (x + x0 ), cuando el punto de tangencia es (x0 , y0 ). Determine el lugar geométrico del punto medio K del segmento AB, cuando movemos el punto P.
Observación Antes de comenzar a resolver el problema es importante leer bien el enunciado. En las proximas páginas iremos marcando las partes importantes del enunciado y simultaneamente iremos dibujando en el sistema de coordenadas OXY lo que esas partes quieren decir.
Ejercicio 3 Lectura del Enunciado Solución
Geometría Anlítica (GA_tectas.lyx)[2/17]
Enunciado Considere el punto variable P = (x0 , y0 ) 6= (0, 0), perteneciente a una parábola de ecuación y 2 = 4px. Por el punto P = (x0 , y0 ), se traza una una tangente L a la parábola. La cual corta a los ejes OX y OY en los puntos A y B respectivamente. Asumiendo que la ecuación de una tangente a la parábola y 2 = 4px es L : yy0 = 2p (x + x0 ), cuando el punto de tangencia es (x0 , y0 ). Determine el lugar geométrico del punto medio K del segmento AB, cuando movemos el punto P.
Observación Antes de comenzar a resolver el problema es importante leer bien el enunciado. En las proximas páginas iremos marcando las partes importantes del enunciado y simultaneamente iremos dibujando en el sistema de coordenadas OXY lo que esas partes quieren decir.
Ejercicio 3 Lectura del Enunciado Solución
Geometría Anlítica (GA_tectas.lyx)[3/17]
Enunciado Considere el punto variable P = (x0 , y0 ) 6= (0, 0), perteneciente a una parábola de ecuación y 2 = 4px. Por el punto P = (x0 , y0 ), se traza una una tangente L a la parábola. La cual corta a los ejes OX y OY en los puntos A y B respectivamente. Asumiendo que la ecuación de una tangente a la parábola y 2 = 4px es L : yy0 = 2p (x + x0 ), cuando el punto de tangencia es (x0 , y0 ). Determine el lugar geométrico del punto medio K del segmento AB, cuando movemos el punto P.
Observación Antes de comenzar a resolver el problema es importante leer bien el enunciado. En las proximas páginas iremos marcando las partes importantes del enunciado y simultaneamente iremos dibujando en el sistema de coordenadas OXY lo que esas partes quieren decir.
Ejercicio 3 Lectura del Enunciado Solución
Geometría Anlítica (GA_tectas.lyx)[4/17]
Enunciado Considere el punto variable P = (x0 , y0 ) 6= (0, 0), perteneciente a una parábola de ecuación y 2 = 4px. Por el punto P = (x0 , y0 ), se traza una una tangente L a la parábola. La cual corta a los ejes OX y OY en los puntos A y B respectivamente. Asumiendo que la ecuación de una tangente a la parábola y 2 = 4px es L : yy0 = 2p (x + x0 ), cuando el punto de tangencia es (x0 , y0 ). Determine el lugar geométrico del punto medio K del segmento AB, cuando movemos el punto P.
Observación Antes de comenzar a resolver el problema es importante leer bien el enunciado. En las proximas páginas iremos marcando las partes importantes del enunciado y simultaneamente iremos dibujando en el sistema de coordenadas OXY lo que esas partes quieren decir.
Ejercicio 3 Lectura del Enunciado Solución
Geometría Anlítica (GA_tectas.lyx)[5/17]
Lectura del enunciado
Ejercicio 3 Lectura del Enunciado Solución
Geometría Anlítica (GA_tectas.lyx)[6/17]
Lectura del Enunciado Considere el punto variable P = (x0 , y0 ) 6= (0, 0), perteneciente a una parábola de ecuación y 2 = 4px . Por el punto P = (x0 , y0 ), se traza una una tangente L a la parábola. La cual corta a los ejes OX y OY en los puntos A y B respectivamente. Asumiendo que la ecuación de una tangente a la parábola y 2 = 4px es L : yy0 = 2p (x + x0 ), cuando el punto de tangencia es(x0 , y0 ).Determine el lugar geométrico del punto medio K del segmento AB, cuando movemos el punto P.
Instrucciones Mueva el punto P en el sitema OXY de la derecha. Mueva la recta tangente L en el sitema OXY de la derecha. Al mover el punto P verá como se mueve L y los puntos A y B. Al mover el punto P o la recta L, verá como se mueve el punto K . Mueva la recta L o el punto P y verá como se mueven los puntos correspondientes de acuerdo a su definición. Obs. En cualquier momento que lo desee puede agrandar el sistema OXY para verlo mejor.
Ejercicio 3 Lectura del Enunciado Solución
Geometría Anlítica (GA_tectas.lyx)[7/17]
Lectura del Enunciado Considere el punto variable P = (x0 , y0 ) 6= (0, 0), perteneciente a una parábola de ecuación y 2 = 4px . Por el punto P = (x0 , y0 ), se traza una una tangente L a la parábola. La cual corta a los ejes OX y OY en los puntos A y B respectivamente. Asumiendo que la ecuación de una tangente a la parábola y 2 = 4px es L : yy0 = 2p (x + x0 ), cuando el punto de tangencia es(x0 , y0 ).Determine el lugar geométrico del punto medio K del segmento AB, cuando movemos el punto P.
Instrucciones Mueva el punto P en el sitema OXY de la derecha. Mueva la recta tangente L en el sitema OXY de la derecha. Al mover el punto P verá como se mueve L y los puntos A y B. Al mover el punto P o la recta L, verá como se mueve el punto K . Mueva la recta L o el punto P y verá como se mueven los puntos correspondientes de acuerdo a su definición. Obs. En cualquier momento que lo desee puede agrandar el sistema OXY para verlo mejor.
Ejercicio 3 Lectura del Enunciado Solución
Geometría Anlítica (GA_tectas.lyx)[8/17]
Lectura del Enunciado Considere el punto variable P = (x0 , y0 ) 6= (0, 0), perteneciente a una parábola de ecuación y 2 = 4px . Por el punto P = (x0 , y0 ), se traza una una tangente L a la parábola. La cual corta a los ejes OX y OY en los puntos A y B respectivamente. Asumiendo que la ecuación de una tangente a la parábola y 2 = 4px es L : yy0 = 2p (x + x0 ), cuando el punto de tangencia es(x0 , y0 ).Determine el lugar geométrico del punto medio K del segmento AB, cuando movemos el punto P.
Instrucciones Mueva el punto P en el sitema OXY de la derecha. Mueva la recta tangente L en el sitema OXY de la derecha. Al mover el punto P verá como se mueve L y los puntos A y B. Al mover el punto P o la recta L, verá como se mueve el punto K . Mueva la recta L o el punto P y verá como se mueven los puntos correspondientes de acuerdo a su definición. Obs. En cualquier momento que lo desee puede agrandar el sistema OXY para verlo mejor.
Ejercicio 3 Lectura del Enunciado Solución
Geometría Anlítica (GA_tectas.lyx)[9/17]
Lectura del Enunciado Considere el punto variable P = (x0 , y0 ) 6= (0, 0), perteneciente a una parábola de ecuación y 2 = 4px . Por el punto P = (x0 , y0 ), se traza una una tangente L a la parábola. La cual corta a los ejes OX y OY en los puntos A y B respectivamente. Asumiendo que la ecuación de una tangente a la parábola y 2 = 4px es L : yy0 = 2p (x + x0 ), cuando el punto de tangencia es(x0 , y0 ).Determine el lugar geométrico del punto medio K del segmento AB, cuando movemos el punto P.
Instrucciones Mueva el punto P en el sitema OXY de la derecha. Mueva la recta tangente L en el sitema OXY de la derecha. Al mover el punto P verá como se mueve L y los puntos A y B. Al mover el punto P o la recta L, verá como se mueve el punto K . Mueva la recta L o el punto P y verá como se mueven los puntos correspondientes de acuerdo a su definición. Obs. En cualquier momento que lo desee puede agrandar el sistema OXY para verlo mejor.
Ejercicio 3 Lectura del Enunciado Solución
Geometría Anlítica (GA_tectas.lyx)[10/17]
Lectura del Enunciado Considere el punto variable P = (x0 , y0 ) 6= (0, 0), perteneciente a una parábola de ecuación y 2 = 4px . Por el punto P = (x0 , y0 ), se traza una una tangente L a la parábola. La cual corta a los ejes OX y OY en los puntos A y B respectivamente. Asumiendo que la ecuación de una tangente a la parábola y 2 = 4px es L : yy0 = 2p (x + x0 ), cuando el punto de tangencia es(x0 , y0 ).Determine el lugar geométrico del punto medio K del segmento AB, cuando movemos el punto P.
Instrucciones Mueva el punto P en el sitema OXY de la derecha. Mueva la recta tangente L en el sitema OXY de la derecha. Al mover el punto P verá como se mueve L y los puntos A y B. Al mover el punto P o la recta L, verá como se mueve el punto K . Mueva la recta L o el punto P y verá como se mueven los puntos correspondientes de acuerdo a su definición. Obs. En cualquier momento que lo desee puede agrandar el sistema OXY para verlo mejor.
Ejercicio 3 Lectura del Enunciado Solución
Geometría Anlítica (GA_tectas.lyx)[11/17]
Lectura del Enunciado Considere el punto variable P = (x0 , y0 ) 6= (0, 0), perteneciente a una parábola de ecuación y 2 = 4px . Por el punto P = (x0 , y0 ), se traza una una tangente L a la parábola. La cual corta a los ejes OX y OY en los puntos A y B respectivamente. Asumiendo que la ecuación de una tangente a la parábola y 2 = 4px es L : yy0 = 2p (x + x0 ), cuando el punto de tangencia es(x0 , y0 ).Determine el lugar geométrico del punto medio K del segmento AB, cuando movemos el punto P.
Instrucciones Mueva el punto P en el sitema OXY de la derecha. Mueva la recta tangente L en el sitema OXY de la derecha. Al mover el punto P verá como se mueve L y los puntos A y B. Al mover el punto P o la recta L, verá como se mueve el punto K . Mueva la recta L o el punto P y verá como se mueven los puntos correspondientes de acuerdo a su definición. Obs. En cualquier momento que lo desee puede agrandar el sistema OXY para verlo mejor.
Ejercicio 3 Lectura del Enunciado Solución
Geometría Anlítica (GA_tectas.lyx)[12/17]
Lectura del Enunciado Considere el punto variable P = (x0 , y0 ) 6= (0, 0), perteneciente a una parábola de ecuación y 2 = 4px . Por el punto P = (x0 , y0 ), se traza una una tangente L a la parábola. La cual corta a los ejes OX y OY en los puntos A y B respectivamente. Asumiendo que la ecuación de una tangente a la parábola y 2 = 4px es L : yy0 = 2p (x + x0 ), cuando el punto de tangencia es(x0 , y0 ).Determine el lugar geométrico del punto medio K del segmento AB, cuando movemos el punto P.
Instrucciones Mueva el punto P en el sitema OXY de la derecha. Mueva la recta tangente L en el sitema OXY de la derecha. Al mover el punto P verá como se mueve L y los puntos A y B. Al mover el punto P o la recta L, verá como se mueve el punto K . Mueva la recta L o el punto P y verá como se mueven los puntos correspondientes de acuerdo a su definición. Obs. En cualquier momento que lo desee puede agrandar el sistema OXY para verlo mejor.
Ejercicio 3 Lectura del Enunciado Solución
Geometría Anlítica (GA_tectas.lyx)[13/17]
Lectura del Enunciado Considere el punto variable P = (x0 , y0 ) 6= (0, 0), perteneciente a una parábola de ecuación y 2 = 4px . Por el punto P = (x0 , y0 ), se traza una una tangente L a la parábola. La cual corta a los ejes OX y OY en los puntos A y B respectivamente. Asumiendo que la ecuación de una tangente a la parábola y 2 = 4px es L : yy0 = 2p (x + x0 ), cuando el punto de tangencia es(x0 , y0 ).Determine el lugar geométrico del punto medio K del segmento AB, cuando movemos el punto P.
Instrucciones Mueva el punto P en el sitema OXY de la derecha. Mueva la recta tangente L en el sitema OXY de la derecha. Al mover el punto P verá como se mueve L y los puntos A y B. Al mover el punto P o la recta L, verá como se mueve el punto K . Mueva la recta L o el punto P y verá como se mueven los puntos correspondientes de acuerdo a su definición. Obs. En cualquier momento que lo desee puede agrandar el sistema OXY para verlo mejor.
Ejercicio 3 Lectura del Enunciado Solución
Geometría Anlítica (GA_tectas.lyx)[14/17]
Lectura del Enunciado Considere el punto variable P = (x0 , y0 ) 6= (0, 0), perteneciente a una parábola de ecuación y 2 = 4px . Por el punto P = (x0 , y0 ), se traza una una tangente L a la parábola. La cual corta a los ejes OX y OY en los puntos A y B respectivamente. Asumiendo que la ecuación de una tangente a la parábola y 2 = 4px es L : yy0 = 2p (x + x0 ), cuando el punto de tangencia es(x0 , y0 ).Determine el lugar geométrico del punto medio K del segmento AB, cuando movemos el punto P.
Instrucciones Mueva el punto P en el sitema OXY de la derecha. Mueva la recta tangente L en el sitema OXY de la derecha. Al mover el punto P verá como se mueve L y los puntos A y B. Al mover el punto P o la recta L, verá como se mueve el punto K . Mueva la recta L o el punto P y verá como se mueven los puntos correspondientes de acuerdo a su definición. Obs. En cualquier momento que lo desee puede agrandar el sistema OXY para verlo mejor.
Ejercicio 3 Lectura del Enunciado Solución
Geometría Anlítica (GA_tectas.lyx)[15/17]
Lectura del Enunciado Considere el punto variable P = (x0 , y0 ) 6= (0, 0), perteneciente a una parábola de ecuación y 2 = 4px . Por el punto P = (x0 , y0 ), se traza una una tangente L a la parábola. La cual corta a los ejes OX y OY en los puntos A y B respectivamente. Asumiendo que la ecuación de una tangente a la parábola y 2 = 4px es L : yy0 = 2p (x + x0 ), cuando el punto de tangencia es(x0 , y0 ).Determine el lugar geométrico del punto medio K del segmento AB, cuando movemos el punto P.
Instrucciones Mueva el punto P en el sitema OXY de la derecha. Mueva la recta tangente L en el sitema OXY de la derecha. Al mover el punto P verá como se mueve L y los puntos A y B. Al mover el punto P o la recta L, verá como se mueve el punto K . Mueva la recta L o el punto P y verá como se mueven los puntos correspondientes de acuerdo a su definición. Obs. En cualquier momento que lo desee puede agrandar el sistema OXY para verlo mejor.
Ejercicio 3 Lectura del Enunciado Solución
Geometría Anlítica (GA_tectas.lyx)[16/17]
Solución
Ejercicio 3 Lectura del Enunciado Solución
Geometría Anlítica (GA_tectas.lyx)[17/17]
Solución Considere el punto variable P = (x0 , y0 ) 6= (0, 0), perteneciente a una parábola de ecuación y 2 = 4px . Por el punto P = (x0 , y0 ), se traza una una tangente L a la parábola. La cual corta a los ejes OX y OY en los puntos A y B respectivamente. Asumiendo que la ecuación de una tangente a la parábola y 2 = 4px es L : yy0 = 2p (x + x0 ), cuando el punto de tangencia es(x0 , y0 ).Determine el lugar geométrico del punto medio K del segmento AB, cuando movemos el punto P.
Ejercicio 3 Lectura del Enunciado Solución
Geometría Anlítica (GA_tectas.lyx)[18/17]
Solución Considere el punto variable P = (x0 , y0 ) 6= (0, 0), perteneciente a una parábola de ecuación y 2 = 4px . Por el punto P = (x0 , y0 ), se traza una una tangente L a la parábola. La cual corta a los ejes OX y OY en los puntos A y B respectivamente. Asumiendo que la ecuación de una tangente a la parábola y 2 = 4px es L : yy0 = 2p (x + x0 ), cuando el punto de tangencia es(x0 , y0 ).Determine el lugar geométrico del punto medio K del segmento AB, cuando movemos el punto P.
Ejercicio 3 Lectura del Enunciado Solución
Geometría Anlítica (GA_tectas.lyx)[19/17]
Solución Considere el punto variable P = (x0 , y0 ) 6= (0, 0), perteneciente a una parábola de ecuación y 2 = 4px . Por el punto P = (x0 , y0 ), se traza una una tangente L a la parábola. La cual corta a los ejes OX y OY en los puntos A y B respectivamente. Asumiendo que la ecuación de una tangente a la parábola y 2 = 4px es L : yy0 = 2p (x + x0 ), cuando el punto de tangencia es(x0 , y0 ).Determine el lugar geométrico del punto medio K del segmento AB, cuando movemos el punto P.
Ejercicio 3 Lectura del Enunciado Solución
Geometría Anlítica (GA_tectas.lyx)[20/17]
Solución Considere el punto variable P = (x0 , y0 ) 6= (0, 0), perteneciente a una parábola de ecuación y 2 = 4px . Por el punto P = (x0 , y0 ), se traza una una tangente L a la parábola. La cual corta a los ejes OX y OY en los puntos A y B respectivamente. Asumiendo que la ecuación de una tangente a la parábola y 2 = 4px es L : yy0 = 2p (x + x0 ), cuando el punto de tangencia es(x0 , y0 ).Determine el lugar geométrico del punto medio K del segmento AB, cuando movemos el punto P.
Ejercicio 3 Lectura del Enunciado Solución
Geometría Anlítica (GA_tectas.lyx)[21/17]
Solución Considere el punto variable P = (x0 , y0 ) 6= (0, 0), perteneciente a una parábola de ecuación y 2 = 4px . Por el punto P = (x0 , y0 ), se traza una una tangente L a la parábola. La cual corta a los ejes OX y OY en los puntos A y B respectivamente. Asumiendo que la ecuación de una tangente a la parábola y 2 = 4px es L : yy0 = 2p (x + x0 ), cuando el punto de tangencia es(x0 , y0 ).Determine el lugar geométrico del punto medio K del segmento AB, cuando movemos el punto P.
Ejercicio 3 Lectura del Enunciado Solución
Geometría Anlítica (GA_tectas.lyx)[22/17]
Solución Considere el punto variable P = (x0 , y0 ) 6= (0, 0), perteneciente a una parábola de ecuación y 2 = 4px . Por el punto P = (x0 , y0 ), se traza una una tangente L a la parábola. La cual corta a los ejes OX y OY en los puntos A y B respectivamente. Asumiendo que la ecuación de una tangente a la parábola y 2 = 4px es L : yy0 = 2p (x + x0 ), cuando el punto de tangencia es(x0 , y0 ).Determine el lugar geométrico del punto medio K del segmento AB, cuando movemos el punto P.
Ejercicio 3 Lectura del Enunciado Solución
Geometría Anlítica (GA_tectas.lyx)[23/17]
Solución Considere el punto variable P = (x0 , y0 ) 6= (0, 0), perteneciente a una parábola de ecuación y 2 = 4px . Por el punto P = (x0 , y0 ), se traza una una tangente L a la parábola. La cual corta a los ejes OX y OY en los puntos A y B respectivamente. Asumiendo que la ecuación de una tangente a la parábola y 2 = 4px es L : yy0 = 2p (x + x0 ), cuando el punto de tangencia es(x0 , y0 ).Determine el lugar geométrico del punto medio K del segmento AB, cuando movemos el punto P.
Ejercicio 3 Lectura del Enunciado Solución
Geometría Anlítica (GA_tectas.lyx)[24/17]
Solución Considere el punto variable P = (x0 , y0 ) 6= (0, 0), perteneciente a una parábola de ecuación y 2 = 4px . Por el punto P = (x0 , y0 ), se traza una una tangente L a la parábola. La cual corta a los ejes OX y OY en los puntos A y B respectivamente. Asumiendo que la ecuación de una tangente a la parábola y 2 = 4px es L : yy0 = 2p (x + x0 ), cuando el punto de tangencia es(x0 , y0 ).Determine el lugar geométrico del punto medio K del segmento AB, cuando movemos el punto P.
Ejercicio 3 Lectura del Enunciado Solución
Geometría Anlítica (GA_tectas.lyx)[25/17]
Solución Considere el punto variable P = (x0 , y0 ) 6= (0, 0), perteneciente a una parábola de ecuación y 2 = 4px . Por el punto P = (x0 , y0 ), se traza una una tangente L a la parábola. La cual corta a los ejes OX y OY en los puntos A y B respectivamente. Asumiendo que la ecuación de una tangente a la parábola y 2 = 4px es L : yy0 = 2p (x + x0 ), cuando el punto de tangencia es(x0 , y0 ).Determine el lugar geométrico del punto medio K del segmento AB, cuando movemos el punto P.
Ejercicio 3 Lectura del Enunciado Solución
Geometría Anlítica (GA_tectas.lyx)[26/17]
Solución Considere el punto variable P = (x0 , y0 ) 6= (0, 0), perteneciente a una parábola de ecuación y 2 = 4px . Por el punto P = (x0 , y0 ), se traza una una tangente L a la parábola. La cual corta a los ejes OX y OY en los puntos A y B respectivamente. Asumiendo que la ecuación de una tangente a la parábola y 2 = 4px es L : yy0 = 2p (x + x0 ), cuando el punto de tangencia es(x0 , y0 ).Determine el lugar geométrico del punto medio K del segmento AB, cuando movemos el punto P.