9789386367297 Flipbook PDF


56 downloads 116 Views

Recommend Stories


Porque. PDF Created with deskpdf PDF Writer - Trial ::
Porque tu hogar empieza desde adentro. www.avilainteriores.com PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com Avila Interi

EMPRESAS HEADHUNTERS CHILE PDF
Get Instant Access to eBook Empresas Headhunters Chile PDF at Our Huge Library EMPRESAS HEADHUNTERS CHILE PDF ==> Download: EMPRESAS HEADHUNTERS CHIL

Story Transcript

Issac Newton A Biography

Estefania Wenger

Issac Newton

Issac Newton A Biography

Estefania Wenger

Alpha Editions

Copyright © 2017

ISBN

:

9789386367297

Design and Setting By Alpha Editions email - [email protected]

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher. The views and characters expressed in the book are of the author and his/her imagination and do not represent the views of the Publisher.

Contents Introduction ..................................................... vii Early Life ............................................................ 1 Later Life .......................................................... 20 Religious views of Isaac Newton ..................... 40 Isaac Newton's occult studies........................... 52 Isaac Newton in popular culture ...................... 71 Apple incident .................................................. 74 About the Author ............................................ 78

Introduction Sir Isaac Newton FRS (/'nju?t?n/;[6] 25 December 1642 – 20 March 1726/27[1]) was an English physicist and mathematician (described in his own day as a "natural philosopher") who is widely recognised as one of the most influential scientists of all time and a key figure in the scientific revolution. His book Philosophiæ Naturalis Principia Mathematica ("Mathematical Principles of Natural Philosophy"), first published in 1687, laid the foundations for classical mechanics. Newton made seminal contributions to optics, and he shares credit with Gottfried Wilhelm Leibniz for the development of calculus. Newton's Principia formulated the laws of motion and universal gravitation, which dominated scientists' view of the physical universe for the next three centuries. By deriving Kepler's laws of planetary motion from his mathematical description of gravity, and then using the same principles to account for the trajectories of comets, the tides, the precession of the equinoxes, and other phenomena, Newton removed the last doubts about the validity of the heliocentric model of the Solar System. This work also demonstrated that the motion of objects on Earth and of celestial bodies could be described by the same principles. His prediction that Earth should be shaped as an oblate spheroid was later vindicated by the measurements of Maupertuis, La Condamine, and others, which helped convince most Continental European scientists of the superiority of Newtonian mechanics over the earlier system of Descartes. Newton built the first practical reflecting telescope and developed a theory of colour based on the observation that a prism decomposes white light into the many colours of the visible

spectrum. He formulated an empirical law of cooling, studied the speed of sound, and introduced the notion of a Newtonian fluid. In addition to his work on calculus, as a mathematician Newton contributed to the study of power series, generalised the binomial theorem to non-integer exponents, developed a method for approximating the roots of a function, and classified most of the cubic plane curves. Newton was a fellow of Trinity College and the second Lucasian Professor of Mathematics at the University of Cambridge. He was a devout but unorthodox Christian,[7] and, unusually for a member of the Cambridge faculty of the day, he refused to take holy orders in the Church of England, perhaps because he privately rejected the doctrine of the Trinity. Beyond his work on the mathematical sciences, Newton dedicated much of his time to the study of biblical chronology and alchemy, but most of his work in those areas remained unpublished until long after his death. In his later life, Newton became president of the Royal Society. Newton served the British government as Warden and Master of the Royal Mint.

Issac Newton - 1

Early Life Isaac Newton was born on Christmas Day, 25 December 1642 Old Style (which is 4 January 1643 on the Gregorian calendar, which is now used) at Woolsthorpe Manor in Woolsthorpe-byColsterworth, a hamlet in the county of Lincolnshire. At the time of Newton's birth, England had not adopted the Gregorian calendar and therefore his date of birth was recorded as Christmas Day, according to the Julian calendar. Newton was born three months after the death of his father, a prosperous farmer also named Isaac Newton. Isaac Newton, Sr. was described as a "wild and extravagant man." Born prematurely, young Isaac was a small child; his mother Hannah Ayscough reportedly said that he could have fitted inside a quart mug. When Newton was three, his mother remarried and went to live with her new husband, the Reverend Barnabus Smith, leaving her son in the care of his maternal grandmother, Margery Ayscough. The young Isaac disliked his stepfather and held some enmity towards his mother for marrying him, as revealed by this entry in a list of sins committed up to the age of 19: "Threatening my father and mother to burn them and the house over them." Later on his mother returned after her husband died.

2 - Estefania Wenger

From the ages of 12 through 17, he was educated at The King's School, Grantham (where his signature can still be seen upon a library window sill). He was removed from school, and by October 1659, he was to be found at Woolsthorpe-byColsterworth, where his mother, widowed by now for a second time, attempted to make a farmer of him. He hated farming. Henry Stokes, master at the King's School, persuaded his mother to send him back to school so that he might complete his education. This he did at the age of eighteen, achieving an admirable final report. In June 1661, he was admitted to Trinity College, Cambridge as a sizar—a sort of work-study role. At that time, the college's teachings were based on those of Aristotle, whom Newton supplemented with modern philosophers such as Descartes and astronomers such as Copernicus, Galileo, and Kepler. In 1665, he discovered the generalised binomial theorem and began to develop a mathematical theory that later became infinitesimal calculus. Soon after Newton had obtained his degree in August 1665, the University closed down as a precaution against the Great Plague. Although he had been undistinguished as a Cambridge student, Newton's private studies at his home in Woolsthorpe over the subsequent two years saw the development of his theories on calculus, optics and the law of gravitation. In 1667 he returned to Cambridge as a fellow of Trinity. Newton had stated that when he had purchased a book on astrology at Stourbridge fair, near Cambridge, he was unable, on account of his ignorance of trigonometry, to understand a figure of the heavens which was drawn in the book. He therefore bought

Issac Newton - 3

an English edition of Euclid's Elements which included an index of propositions, and, having turned to two or three which he thought might be helpful, found them so obvious that he dismissed it "as a trifling book", and applied himself to the study of René Descartes' Geometry. It is reported that in his examination for a scholarship at Trinity, to which he was elected on 28 April 1664, he was examined in Euclid by Dr. Isaac Barrow, who was disappointed in Newton's lack of knowledge on the subject. Newton was convinced to read the Elements again with care, and formed a more favourable estimate of Euclid's merit. The study of Descartes's Geometry seems to have inspired Newton with a love of the subject, and introduced him to higher mathematics. In a small commonplace book, dated January 1664, there are several articles on angular sections, and the squaring of curves and "crooked lines that may be squared", several calculations about musical notes, geometrical propositions from François Viète and Frans van Schooten, annotations out of John Wallis's Arithmetic of Infinities, together with observations on refraction, on the grinding of "spherical optic glasses", on the errors of lenses and the method of rectifying them, and on the extraction of all kinds of roots, particularly those "in affected powers." In this same book the following entry made by Newton himself, many years afterwards, gives a further account of the nature of his work during the period when he was an undergraduate: July 4, 1699. By consulting an account of my expenses at Cambridge, in the years 1663 and 1664, I find that in the year 1664 a little before Christmas, I being then Senior

4 - Estefania Wenger

Sophister, bought Schooten's Miscellanies and Cartes' Geometry (having read this Geometry and Oughtred's Clavis clean over half a year before), and borrowed Wallis' works, and by consequence made these annotations out of Schooten and Wallis, in winter between the years 1664 and 1665. At such time I found the method of Infinite Series; and in summer 1665, being forced from Cambridge by the plague, I computed the area of the Hyperbola at Boothby, in Lincolnshire, to two and fifty figures by the same method.

He formulated the three laws of motion: 1. Every object in a state of uniform motion tends to remain in that state of motion unless an external force is applied to it. 2. The relationship between an object's mass m, its acceleration a, and the applied force F is F = ma. Acceleration and force are vectors (as indicated by their symbols being displayed in slant bold font); in this law the direction of the force vector is the same as the direction of the acceleration vector. 3. For every action there is an equal and opposite reaction. Academic career In January 1665 Newton took the degree of Bachelor of Arts. The persons appointed (in conjunction with the proctors, John Slade of Catharine Hall, Cambridge, and Benjamin Pulleyn of Trinity College, Newton's tutor) to examine the questionists were

Issac Newton - 5

John Eachard of Catharine Hall and Thomas Gipps of Trinity University. It is a curious accident that we have no information about the respective merits of the candidates for a degree in this year, since the "ordo senioritatis" of the Bachelors of Arts for the year is omitted in the "Grace Book." It is supposed that it was in 1665 that the method of fluxións (his word for "derivatives") first occurred to Newton's mind. There are several papers in Newton's handwriting bearing dates 1665 and 1666 in which the method is described, in some of which dotted or dashed letters are used to represent fluxions, and in some of which the method is explained without the use of dotted letters. Both in 1665 and in 1666 Trinity College was dismissed on account of the Great Plague of London. On each occasion it was agreed, as shown by entries in the "Conclusion Book" of the college, dated 7 August 1665, and 22 June 1666, and signed by the master of the college, Dr Pearson, that all fellows and scholars who were dismissed on account of the pestilence be allowed one month's commons. Newton must have left college before August 1665, as his name does not appear in the list of those who received extra commons on that occasion, and he tells us himself in the extract from his commonplace book already quoted that he was "forced from Cambridge by the plague" in the summer of that year. He was elected a fellow of his college on 5 October 1667. There were nine vacancies, one caused by the death of Abraham Cowley the previous summer, and the nine successful candidates were all of the same academic standing. A few weeks after his election to a fellowship Newton went to Lincolnshire, and did not return to Cambridge till the February following. In March 1668 he took his M.A. degree.

6 - Estefania Wenger

During the years 1666 to 1669 Newton's studies were very diverse. It is known that he bought prisms and lenses on two or three occasions, and also chemicals and a furnace, apparently for chemical experiments; but he also employed part of his time on the theory of fluxions and other branches of pure mathematics. He wrote a paper, De Analysi per Aequationes Numero Terminorum Infinitas, which he put, probably in June 1669, into the hands of Isaac Barrow (then Lucasian Professor of Mathematics), at the same time giving him permission to communicate its contents to their common friend John Collins (1624–1683), a mathematician of no mean order. Barrow did this on 31 July 1669, but kept the name of the author a secret, and merely told Collins that he was a friend staying at Cambridge, who had a powerful genius for such matters. In a subsequent letter on 20 August Barrow expressed his pleasure at hearing the favourable opinion which Collins had formed of the paper, and added, "the name of the author is Newton, a fellow of our college, and a young man, who is only in his second year since he took the degree of Master of Arts, and who, with an unparalleled genius (eximio quo est acumine), has made very great progress in this branch of mathematics". Shortly afterwards Barrow resigned his chair, and was instrumental in securing Newton's election as his successor. Newton was elected Lucasian professor on 29 October 1670. It was his duty as professor to lecture at least once a week in term time on some portion of geometry, arithmetic, astronomy, geography, optics, statics, or some other mathematical subject, and also for two hours in the week to allow an audience to any student who might come to consult with the professor on any

Issac Newton - 7

difficulties he had met with. The subject which Newton chose for his lectures was optics. These lectures did little to expand his reputation, as they were apparently remarkably sparsely attended; frequently leaving Newton to lecture at the walls of the classroom. An account of their content was presented to the Royal Society in the spring of 1672. The composition of white light According to Alfred Rupert Hall the first practical reflecting telescope was built by Newton in 1668. Later on such prototype for a design came to be called a Newtonian telescope or Newton's reflector. On 21 December 1671 he was proposed as a candidate for admission to the Royal Society by Dr Seth Ward, bishop of Salisbury, and on 11 January 1672 he was elected a fellow of the Society. At the meeting at which Newton was elected, he read a description of a reflecting telescope which he had invented, and "it was ordered that a letter should be written by the secretary to Mr Newton to acquaint him of his election into the Society, and to thank him for the communication of his telescope, and to assure him that the Society would take care that all right should be done him with respect to this invention." In his reply to the secretary on 18 January 1672, Newton writes: "I desire that in your next letter you would inform me for what time the society continue their weekly meetings; because, if they continue them for any time, I am purposing them to be considered of and examined an account of a philosophical discovery, which induced me to the making of the said telescope, and which I doubt not but will prove much more grateful than

Sir Isaac Newton was an English mathematician, astronomer, and physicist who is widely recognised as one of the most influential scientists of all time and a key figure in the scientific revolution. This book gives an account of his life and theories.

Alpha Editions

Get in touch

Social

© Copyright 2013 - 2024 MYDOKUMENT.COM - All rights reserved.