Alejandro Magno ( a.c) Pelas (356) Babilonia (323) Alumno de Aristóteles Conquistador del mundo Fundador de Alejandría

Alejandro Magno (356-323 a.C) „ „ „ „ „ Pelas (356) Babilonia (323) Alumno de Aristóteles Conquistador del mundo Fundador de Alejandría Campaña Mil

1 downloads 81 Views 673KB Size

Recommend Stories


Alejandro Magno
Conquistador. Militar. Triunfador del desierto. Liderazgo. Poder. Gloria. Extrategias. Conquista

Alejandro Magno
Historia Universal. Grecia antigua. Primera conquista. Imperio. Conquistador. Rey de Macedonia. Conquista de Asia

Alejandro Magno
Historia universal o de Grecia Antigua. Rey de Macedonia. Conquistador. Conquista del imperio persa. Militar. Batalla de Gaugamela

Story Transcript

Alejandro Magno (356-323 a.C) „ „ „ „ „

Pelas (356) Babilonia (323) Alumno de Aristóteles Conquistador del mundo Fundador de Alejandría

Campaña Militar (334-323 a.C)

Era Helenística

Período Helenista Alejandría

Período Helenista Alejandría

Período Helenista Alejandría „

Gran Puerto: Navegación mejorada

117 m (edificio de 40 pisos) Sistema de espejos

Trirreme guerrero

Período Helenista Alejandría fundada 331 a.C. „

„ „ „ „ „

Deseo de Alejandro de una capital cosmopolita Puerto Mediterráneo, canal hacia el Rojo Repositorio del saber de todas las culturas Importación: sabios pagados por el gobierno Inmigraciones griegas, persas, babilonias,… Cambio de visión: de la griega filosófica a una más científica y tecnológica

Período Helenista Alejandría „

Nuevo dios amalgama: Serapis, su consorte Isis y su hijo Harpócrates

Período Helenista Alejandría „

El Museo (dedicado a las musas, patronas de las artes y las ciencias)

Período Helenista El Museo „ „

„ „ „

„ „

Probablemente quedaba cerca al palacio. Un gran salón, comedor circular, aulas, terraza observatorio, jardín botánico y zoológico. Biblioteca: estantería para papiros, pergaminos, códices. Cuando no cupieron, se usó Biblioteca del Serapeum. Temas científicos: matemáticas, medicina, astronomía, geometría, física, pagados por el gobierno. Sabios pagados por el gobierno Mayoría de descubrimientos de los siguientes 500 años.

Período Helenista El Museo „

„

„ „

„ „

Fundador Demetrius de Faleron bajo, Ptolomeo I, (Sotero). “Libros”, originales y copias, préstamos, donaciones de o se confiscados. Centro de copiado. Centro de traducciones. el Antiguo Testamento: Septuagint (72 rabinos) Llegó a tener 700.000 volúmenes. (10% en el Serapeum) Catálogo anotado, por temas: Pinakes

Euclides (~300 a.C.) „

„

Estudiante: “Pero esto para qué sirve y que gano yo al aprender estas cosas?” Euclides a esclavo: “Dale una moneda a este tipo, pues tiene que sacar provecho de lo que aprende.” (Stobaeus, s. V d.C.) El rey Ptolomeo I se quejó de la dificultad del tema. Euclides: “Oh rey, en la vida real existen dos tipos de caminos, unos para la gente común y otros reservados a los reyes. En la geometría no hay camino real.” (Proclo, 410-85 d.C.)

Los Elementos de Euclides „

Euclides (~300) Recopilación, perfeccionamiento y complementación de la Geometría y Aritmética conocida „

„ Hermandad Pitagórica „ Discípulos de Platón „ Eudoxo „ Propios

„

Ejemplo de belleza y rigor

Los libros de los Elementos „ I : Fundamentos de Geometría:

Teoría de triángulos, paralelas y áreas „ II : Algebra geométrica „ III : Teoría de círculos „ IV : Figuras inscritas y circunscritas

Libro I Definiciones „ Un punto es aquello que no tiene partes. „ Una línea es una longitud sin ancho. „ Los extremos de una línea son puntos „ Una línea recta es la línea que yace parejamente con los puntos que se encuentran en ella. „ Una superficie es aquello que solo tiene largo y ancho.

Libro I Nociones Comunes „ Magnitudes iguales a una tercera son iguales entre sí. „ Si se suman magnitudes iguales a magnitudes iguales los totales serán iguales. „ Si se restan magnitudes iguales de magnitudes iguales las diferencias serán iguales. „ Cosas que coincidan una con otra son iguales entre sí. „ El todo es mayor que cualquiera de sus partes.

Libro I Postulados Trazar una línea recta de un punto 1. cualquiera a otro punto cualquiera. 2. Prolongar una línea recta continuamente en otra línea recta. 3. Describir un círculo con cualquier centro y cualquier distancia [o radio]. 4. Todos los ángulos rectos son iguales entre sí.

Libro I Quinto Postulado 5. Si una línea recta que corta a otras dos líneas rectas forma ángulos internos de un mismo lado que midan juntos menos de dos rectos, las dos líneas rectas, si se prolongan indefinidamente, se encontrarán en el mismo lado en que se forman los ángulos menores a los dos ángulos rectos. 5 bis. Dada una recta y un punto exterior, existe una única paralela a la recta que pase por el punto dado.

Libro I „

Proposición 4. [Congruencia Lado – Ángulo – Lado] Si dos triángulos tienen dos lados iguales a dos lados, respectivamente, y los ángulos comprendidos entre esos lados iguales entre sí, [entonces] también tendrán iguales los otros lados, los triángulos serán iguales y los ángulos restantes serán iguales..

Libro I „

Proposition 32. …La suma de los tres ángulos internos de un triángulo es igual a dos rectos.

C

P

A

Q

B

Libro II : Algebra geométrica (a + b)2 = a2 + 2ab + b2

(a - b)2 = a2 – 2(a – b) b - b2 = a2 - 2ab + b2

a2 - b2 = (a – b)(a + b)

Los libros de los Elementos „ V:

Teoría de proporciones abstractas „ VI : Semejanza y proporciones geométricas „ VII : Introducción a Teoría de Números „ VIII : Proporciones continuas „ IX : Teoría de Números „ X : Clasificación de los inconmensurables

Números primos „ Números que sólo son divisibles por 1

y por el mismo número „ Proposición 20 Libro IX: Hay más números primos que cualquier cantidad propuesta de números primos.

Números perfectos „

„

„

Un número se dice que es perfecto cuando la suma de sus divisores propios es igual al número (Moderno). Un número es perfecto cuando es igual a sus propias partes (“Elementos”). Un número es parte de otro mayor cuando lo mide. (Medir = Dividir)

Números perfectos Ejemplos „6 „ Div (6) ={1,2,3} „ 1+2+3=6 „ 28 „ Div (28)={1,2,4,7,14} „ 1+2+4+7+14=28

Números perfectos Pitagóricos „

Observó que son siempre la suma de una serie consecutiva de números para contar. 6=1+2+3 „ 28=1+2+3+4+5+6+7 „ 496=1+2+3+4+…+31 „ 8128=1+2+3+4+…+127 „

„

Siempre terminan en 6 u 8 (?)

Euclides (2 siglos más tarde) „

Refinó el trabajo de pitagóricos sobre números perfectos

p = 2 ⋅ (2 n

n +1

− 1)

6 = (21 )(2 2 − 1) Primer 28 = (2 2 )(23 − 1) Segundo 496 = (24 )(25 − 1) Tercer 8128 = (26 )(27 − 1) Cuarto 33.550.336 = (212 )(213 − 1) Quinto (Griegos?) 8.589.869.056 = (216 )(217 − 1) ...130 mil cifras ... = (2 216000 )(2 216001 − 1)

Los libros de los Elementos „

XI : Sólidos Geométricos XII : Medida de figuras, método de exhausción XIII : Sólidos regulares (muestra que sólo hay 5)

„

XIV y XV son apócrifos

„ „

Get in touch

Social

© Copyright 2013 - 2024 MYDOKUMENT.COM - All rights reserved.