Story Transcript
Bioactive Polymeric Composites Humberto Palza Departamento de Ingenieria Quimica y Biotecnologia, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile.
Laboratory of Polymer Engineering Universidad de Chile
Dr. R. Quijada
Tailoring short chain branching 100 nm
Nanopartícles
Synthesis of novel fillers
Dr. H. Palza
Tacticity control in PP
Polyolefin synthesis via catalysis
Development of Novel Polymeric Materials Composites (melt and in-situ)
- Biomaterials - Conductive polymers - Structural appl. Applications - Packaging - Recycle
1 um 20 um
-Polyethylene -Polypropylene -Polyamides -etc
10 nm
Arcillas
Nanotubos de Carbono
Fillers: -Metallic particles (Cu, CuO) -Silices -Biomaterials -Carbon nanotubes - Grafites
Laboratory of Polymer Engineering Dr. R. Quijada
Mechanical
Universidad de Chile
Morphological
Thermal
Dr. H. Palza
Chemical recycle
Characterization Antimicrobial
Processing
Fundamental and Applied Research
Thermal stability
Rheological
Barrier Properties
Electrical
Laboratory of Polymer Engineering Dr. R. Quijada
Universidad de Chile
Dr. H. Palza
The concept: Reactor Engineering Catalyst
Filler Characterization
Pyrolisis
Catalyst
Processing
The General idea I: Synthesis
PP Copolymer
Atactic PP
Isotactic PP
Olefins + Catalytic System
Polar copolymers
cyclic olefin copolymers (COC)
Syndiotactic PP
PE Copolymer
Lineal PE
Micro-structure
Branching PE
Properties
The General idea II: Nanocomposites Natural Clay
Melt
+ In-situ Carbon based materials (CNT and graphites)
Silica Nanoparticles
Copper Nanoparticles
Polymer
What properties we can modify?
Tailor-made materials?
The General idea II: Nanocomposites 400
Polypropylene Antimicrobial
t50% [min]
300
Copper
200 100 0 0
5
10 15 CNP [vol %]
20
-3
10
Electrical Conductivity
-5
10
DC (S/cm)
CNT
-7
10
-9
10
-11
10
-13
10
Clay
Mechanical reinforcement
0
2
4 6 8 MWNT (wt%)
10
12
Introducción: Datos (1)
Poliolefinas: polietileno y polipropileno
Introducción: Datos (2) Poliolefinas
Introduction: Why this extraordinary growth?
Control of Microestructure
Flexibility!!!!!!
Composites Polymer + Another Material of different nature
Nanocomposites sPP
iPP aPP
Short chain branching PP
Polymer + Nanoparticle
Copper: Why not to use copper as filler?
For what ?
Copper as Filler ? (1): Materials based on Copper inhibit and/or kill bacteria Steel
Several studies show that copper and its alloys are antibacterial.
Zinc
Bronze (Cu-Zn) Copper
The 2008 Environmental Protection Agency U.S. (EPA) approved the use of more than 260 copper alloys recognizing its antibacterial property.
Keevil et al. Journal of Hospital Infection (2006).
Copper also inhibits or kills other microorganisms such as virus, fungi, and algae, among others
Copper as Filler ? (2): Hospital Applications Faucets
Beds / Bed guardrails
Today Copper represents:
Sinks
Bathroom equipment
Tray tables
Push plates
Door knobs
Carts
IV Poles
Computer keyboards
The world`s most effective antimicrobial touch surface material www.cobrebactericida.org
Why Copper is biocide?
a) Radicales:Reacción tipo Fenton: Cu+ + H2O2 → Cu2+ + OH– + •OH–
b) Iones cobre: En presencia de agua y oxígeno, por mecanismos de corrosión: 2Cu + H2O Cu2O + 2H+ +2e-
Daño en la membrana celular : permeabilidad de la membrana celular. Daño en DNA: interactúa con el ADN previniendo la reproducción
Cu2O + 2H+ 2Cu+2 + H2O +2eCu2O + H2O 2Cu+2 + 2OH- +2e-
The idea:
Polymer
Copper Nanoparticles
Polymeric Nano
Antimicrobial Plastic Material
Polypropylene/Copper (1): 10 nm copper nanoparticles
160 nm
Polymeric Composite
No evidence about oxidation processes on the particle during the processing
Polypropylene/Copper (2): After 90 minutes of contact, the composites eliminated the bacterial growth (E. coli) depending on the amount of copper 0%
Bacterial colony
5%
1%
10 %
20 %
Macromol. Rapid Comm. 31: 563, 2010.
Polypropylene/Copper (3): 400
t50: needy time to eliminate 50% of bacteria
8
10
300
10
t50% [min]
CFU/ml
7
6
10
0 vol % 1 vol% 5 vol% 10 vol% 20 vol%
5
10
0
50
100 0
4
10
200
100 150 Time [min]
200
250
0
5
10 15 CNP [vol %]
20
The biocide behaviour can be tailored by the amount of filler
Composites with the highest incorporation kill or eliminate 99.9% of bacteria after just 4 hours of contact Macromol. Rapid Comm. 31: 563, 2010. Letters in Applied Microbiology.53;50-54, 2011
Polypropylene/Copper (3): Why copper particles embedded in a non-polar polymer matrix release ions?
vs Particles on the surface
Particles from the bulk
Evidence of copper particles on the surface was not detected by XPS
Copper
Copper particles in the bulk are responsable for the ion release!!!!! H. Palza, et al.Macromol. Rapid Comm. 31: 563, 2010.
0
Polypropylene/Copper (4): X-ray difractions
Oxide layer
Original Composite Composite after 100 days submerged in water
50
60 º
70
80 Cu2O
Cu
+ Water + Oxygen
Cu
Corrosion process!!!
Cu2O
Water and oxigen molecules are able to go through the composite and oxidate the metallic copper particles in the bulk of the material
Polypropylene/Copper (5): 1) Water and oxygen molecules diffuse through the polymeric composite water H2O + O2
nanoparticles/polymer
Cu+2
2) Oxidation processes on the metallic copper surface (corrosion)
3) Release of copper ions from the oxide layer 4) Diffusion-out of ions to the water solution
4Cu + 2H2O 2Cu2O+ 4H+ + 4e2Cu2O + O2 CuO Cu2O + 1/2 O2 + 2H2O 2Cu+2 + 4OH-
Polypropylene/Copper (6): Estudio de citotoxicidad:
Efecto de la matriz: Alginato
células de corteza cerebral de ratón
Imágenes de Microscopio de Fluorescencia Ensayo Live/Dead para células UCHT1 para I) Polipropileno Blanco, (II) Polipropileno con 10% de NPCu, (III) Polipropileno con 20% de NPCu, (IV) Polybond con 50% de NPCu. a- Fluorescencia Verde para células vivas; b- Fluorescencia Roja para células muertas.
Polypropylene/Copper Oxide(1):
Particles 200 nm
Composites 1 µm
Polypropylene/Copper Oxide(2): Actividad Antibacterial de PP/NPCu y PP/NPCuO. Conteo de Colonias Bacterianas Bacteria E. Coli .(G-) 10
10
8
10
90%
CFU/ml
6
10
PP 5% vol NPCu 5% vol NPCuO
4
10
2
10
99.9% 0
10
0
100
200
Time [min]
300
Polyethylene/TiO2:
10 nm sol-gel nanoparticles
a
b
c
In-situ polymerization with a metallocene catalyt 1 m
1 m
500 nm
TEM images of PE/TiO2 Nps nanocomposite with (a) 5 wt% of TiO2Nps; and (b and c) with 5 wt% of Mod-TiO2Nps. P. Zapata et al. J. Polymer Science: Chemistry. In press 2012
Polyethylene/TiO2:
P. Zapata et al. J. Polymer Science: Chemistry. In press 2012
Polypropylene/ceramic: Cerámicos bioactivos: – SiO2-CaO-P2O5, en proporciones similares al mineral del hueso humano. – Para un enlace con el hueso, se debe formar una capa superficial de apatita biológicamente activa (Ca10(PO4)6(OH)2) en la interface material/hueso. – Los cerámicos bioactivos por sol-gel presentan mayor bioactividad (formación HA).
http://www.rsc.org/education/eic/issues/2006nov/glassbones.asp
Polypropylene/ceramic: Infecciones centradas en el implante
El factor esencial en la evolución y persistencia de la infección es la formación de biopelículas bacterianas en la superficie del implante.
N engl j med, 350;14, 2004. Current Medicinal Chemical , 2005, 12, 2163-2175
Ceramic particles: Síntesis Sol-Gel de los Biovidrios a partir de TEOS Comp. Biovidrio (%mol)
Nombre
SiO2
CaO
P2O5
Ag2O
CuO
SiO2 - P2O5 - CaO
BG
64%
26%
10%
-
-
SiO2 - P2O5 - CaO - Ag2O
AgBG
64%
26%
5%
5%
-
SiO2 - P2O5 - CaO - CuO
CuBG
64%
26%
5%
-
5%
Superficie especifica BET: 260 m2/g
Material
d50% [µm]
BG
115
AgBG
95
CuBG
104
- arrow in BG shows the peak related with Ca(SiO4) crystals; - arrows in CuBG2 show the peaks related with CuO crystals; - arrows in AgBG2 show: Ag (letter a); Ag2CO3 (letter b); SiP2O/SiO2-P2O5 (letter c) and AgO (letter d) crystals.
Ceramic particles: Biocompatibilidad partículas in vitro después de 14 días en SBF
The arrows indicate the characteristic peaks of polycrystalline hidroxy carbonate apatite
Scanning electron micrographs of: a) original BG sample; and b) BG; c) CuBG2 and d) AgBG2 samples immersed 10 days in SBF.
Ceramic particles: Partículas bioactivas y antimicrobianas Material
E.coli (24 h cultivo)
E. coli (48 h cultivo)
S. mutans (48 h cultivo)
BG [mg/mL]
>300
No ensayado
No ensayado
AgBG [mg/mL]
1–5
0,3 – 0,5
0,5 – 2
CuBG [mg/mL]
100 – 150
5 – 10
5 – 10
Concentración fostatos (ppm)
8 6 4 2 0
0
50
100 150 Tiempo (h)
200
250
Metal ion ppm/g de biovidrio
BG CuBG AgBG
10
CuBG AgBG
140 120 100 80 60 40 20 0
0
50
100 150 200 Tiempo (horas)
250
Polypropylene/ceramic: Original sample:
After 14 days inmersed in SBF-BG/PP:
PP BG/PP CuBG/PP AgBG/PP
Concentración fosforo (ppm)
10 8 6 4 2 0
0
50
100 150 Tiempo (h)
200
250
Metal ion ppm/g de compuesto
Polypropylene/ceramic: CuBG/PP AgBG/PP
6
4
2
0
0
50
100
150
200
250
Tiempo (horas)
Polypropylene/ceramic composites could promote the formation of HA and at the same time be antimicrobial
Polypropylene/ceramic: Estudio de citotoxicidad: Partículas: DMEM+ BG + CuBG + AgBG + Células CNh1 Células CNh1 Células CNh1 Células CNh1 100%
59,7%
23,5%
28,3%
Composito: DMEM+ PP+ BG/PP+ CuBG/PP+ AgBG/PP+ Células CNh1 Células CNh1 Células CNh1 Células CNh1 Células CNh1 100%
96,5%
99,5%
células de corteza cerebral de ratón
77,6%
86,4%
Agradecimientos:
Laboratorio de Terapia Celular Dr. Pablo Caviedes
Dr. Mario Diaz-Dosque Facultad de Odontología Universidad de Chile Dra. Paula Zapata Facultad de Química y Biología Universidad de Santiago
Estudiantes: Macarena Beltran (Ingeniería Química) Natalia Galarce (Ingeniería Química) Julian Bejarano (doctorado en Ciencias de los Materiales) Katherine Delgado (doctorado en Ciencias de los Materiales)