Universidad de Managua

“Universidad de Managua” UdeM Simulación de Sistemas Guía #2 Tema: Determinar si el conjunto de números Pseudoaleatorios dados, cumplen las pruebas e

2 downloads 148 Views 727KB Size

Recommend Stories


UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN MANAGUA
UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN MANAGUA SEMINARIO DE GRADUACION PARA OPTAR AL TITULO DE LICENCIADO EN DERECHO TEMA: DERECHO PROCESAL

Managua
Introducción a la Epidemiologia de las Enfermedades Transmisibles Dr. Manuel E. Bonilla C. Tomado de Dra. Karla Ocón CIES- UINAN / Managua  Estudio

UNIVERSIDAD NACIONAL AUTÓNOMA DE NICARAGUA, MANAGUA FACULTAD REGIONAL MULTIDISCIPLINARIA MATAGALPA UNAN - MANAGUA - FAREM - MATAGALPA
UNIVERSIDAD NACIONAL AUTÓNOMA DE NICARAGUA, MANAGUA FACULTAD REGIONAL MULTIDISCIPLINARIA MATAGALPA UNAN - MANAGUA - FAREM - MATAGALPA MONOGRAFÍA PARA

UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA, MANAGUA UNAN- MANAGUA FACULTAD REGIONAL MULTIDISCIPLINARIA, ESTELI FAREM- ESTELI
UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA, MANAGUA UNAN- MANAGUA FACULTAD REGIONAL MULTIDISCIPLINARIA, ESTELI FAREM- ESTELI Trabajo de Seminario de

UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA, MANAGUA FACULTAD REGIONAL MULTIDISCIPLINARIA MATAGALPA UNAN- MANAGUA FAREM-MATAGALPA
UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA, MANAGUA FACULTAD REGIONAL MULTIDISCIPLINARIA MATAGALPA UNAN- MANAGUA FAREM-MATAGALPA Seminario de Graduac

UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA. MANAGUA. FACULTAD REGIONAL MULTIDISCIPLIANRIA ESTELÍ
Universidad Nacional Autónoma de Nicaragua. UNAN – Managua. Facultad Regional Multidisciplinaria. FAREM – Estelí. UNIVERSIDAD NACIONAL AUTONOMA DE NI

Story Transcript

“Universidad de Managua” UdeM

Simulación de Sistemas Guía #2 Tema: Determinar si el conjunto de números Pseudoaleatorios dados, cumplen las pruebas estadísticas de uniformidad e independencia; para ser considerados números aleatorios. Docente:

MSc. Julio Rito Vargas Avilés

Alumno: XXXXXXXXXXXXXXXXX Grupo: XXXXX Carrera: XXXXXXXXXX

Fecha: XXXXXXX

Determinar con un nivel de confianza de 95%, si el conjunto de números Pseudoaleatorios cumplen las pruebas estadísticas de uniformidad o equiprobabilidad e independencia para ser considerados números aleatorios. Usar los Test Chi-cuadrada y Kolmogorov-Smirnov para la uniformidad o equiprobabilidad de Stat::Fit y el de corridas (runs test) para determinar independencia de Stat::Fit.

0.5632 0.1020 0.0945 0.9499 0.9035 0.9419 0.0927 0.5581 0.4251 0.7184

I.

0.2396 0.4708 0.1357 0.9415 0.1133 0.3802 0.4691 0.0888 0.7327 0.0512

0.5583 0.5690 0.9191 0.7413 0.1115 0.8765 0.5736 0.3969 0.8710 0.5982

0.8050 0.3802 0.1503 0.9335 0.8761 0.5340 0.5615 0.0151 0.4445 0.3277

0.4166 0.8224 0.1645 0.0805 0.0007 0.6593 0.1909 0.8605 0.8864 0.0407

0.5454 0.6866 0.9770 0.8295 0.6222 0.8266 0.2143 0.9615 0.6384 0.2668

0.5491 0.7098 0.1301 0.4575 0.4605 0.5932 0.2672 0.7752 0.6607 0.5557

0.5593 0.9352 0.1100 0.1863 0.0688 0.4277 0.7684 0.0461 0.2892 0.8139

0.7725 0.1388 0.2523 0.5504 0.9164 0.9162 0.3218 0.1122 0.8905 0.3261

0.2326 0.4535 0.4439 0.8926 0.3482 0.7300 0.4765 0.7559 0.5126 0.7949

Primeramente ingresamos los datos en Stat::Fit a como muestra la Imagen 1 y luego de ingresados los datos, desplegamos el menú Statistics y se selecciona el comandoDescriptive . En seguida aparecerá una nueva ventana con el nombre de Descriptive Statistics, en donde se muestra el resumen estadístico de la variable . Imagen 1

Estadística descriptiva: Número de datos (puntos) Valor mínimo Valor máximo Media Mediana Moda Desviación estándar Varianza Coeficiente de variación Asimetría Curtosis II.

100 0.0007 0.997 0.511081 0.54725 0.51125 0.294493 0.0867261 57.6216 -0.0947875 -1.27364

Hacemos el contraste de hipótesis para determinar si el conjunto de números dados se distribuyen uniformemente, para la cual usaremos la prueba Kolmogorv– Smirnov Ho: Los ri se distribuyen uniformente U(0,1) o equiprobables. Ha: Los ri no se distribuyen uniformente U(0,1)

Se selecciona el menú Fit y luego Setup y se mostrará la pantalla que se muestra en la Imagen 2, aquí se elige la distribución que queremos contrastar, en nuestro caso estamos asumiendo que los datos analizados se distribuyen uniformemente por lo que la distribución que elegimos es la Uniforme (Uniform) y damos cli en el botón aceptar.

Imagen 2

Ahora volvemos a hacer clic en el menú Fit y seleccionamos la opción Goodness of Fit (Prueba de Bondad de ajuste) y se mostrarán los resultados que se ve observan en la imagen 3.

Las pruebas de bondad de ajuste proporcionan una orientación útil para evaluar la idoneidad de un posible modelo de entrada, comparando los resultados aleatorios contra un modelo de función de probabilidad conocida para garantizar una suposición que permita utilizar un modelo más complejo de análisis. Imagen 3

Zona de Aceptación Zona de rechazo

0.95 0.05 0.0682 Kolmogorov-Smirnov

El resultado del test de Kolmogorov-Smirnov para determinar si los datos se distribuyen conforme una distribución Uniforme: NO SE RECHAZA (DO NOT REJECT). Esto es, se acepta que los datos con Uniforme. III.

Ahora lo verificaremos manualmente con la prueba Chi-cuadrada, para lo cual vamos a dividir en diez intervalos los números como se indica y registraremos los números que caigan en cada intervalo como lo indica tabla 1. Tabla 1 Intervalo 0.0000-0.0999 0.1000-0.1999 0.2000-0.2999 0.3000-0.3999 0.4000-0.4999 0.5000-0.5999 0.6000-0.6999 0.7000-0.7999 0.8000-0.8999 0.9000-0.9999

La prueba



Oi 10 12 7 7 11 15 5 10 12 11 100

Ei 10 10 10 10 10 10 10 10 10 10 100

(Ei – Oi) 0 -2 3 3 -1 -5 5 0 -2 -1

(Ei – Oi)2 0 4 9 9 1 25 25 0 4 1

(Ei – Oi)2/Ei 0 0.4 0.9 0.9 0.1 2.5 2.5 0 0.4 0.1 7.8

= 0+0.4+0.9+0.9+…+0.1=7.8

La Chi-cuadrada teórica o valor crítico para un 95% de confianza con n-1 grados de libertad es: =16.9. Como puede verse la Por lo tanto No SE RECHAZA Ho. Se confirma que los datos analizados se distribuyen Uniformemente. IV.

Ahora vamos a realizar el contraste de hipótesis para determinar si el conjunto de números son independientes, para lo cual usaremos la prueba de corrida (Runs Test) arriba y debajo de la mediana (above/below median)) y la prueba de corrida de puntos de Inflexión (runs test (turning points)). Ho: Los ri (0,1) son independientes. Ha: Los ri (0,1) son dependientes.

Para lo cual hacemos clic en el menú Statistics y luego hacemos clic en la opción Independence y por último en la opción Runs Test. Al darle Ok, el resultado se despliega en la ventana que se recoge en la imagen 4.

Imagen 4

Puede ver que en ambas pruebas (corrida por abajo y por encima de la mediana y corrida de puntos de inflexión) NO SE RECHAZA Ho. Por lo tanto podemos afirmar que el conjunto de números son independientes. V.

Ahora verificaremos el contraste de hipótesis para determinar si el conjunto de números son independientes, para la prueba de Corrida usando las fórmulas de dicha prueba.

0.5632

0.2396 0

0.1020 0 0.0945 0 0.9499 1

0.4708 1 0.1357 1 0.9415 0

0.5583 1 0.5690 1 0.9191 1 0.7413 0

0.8050 1 0.3802 0 0.1503 0 0.9335 1

0.4166 0 0.8224 1 0.1645 1 0.0805 0

0.5454 1 0.6866 0 0.9770 1 0.8295 1

0.5491 1 0.7098 1 0.1301 0 0.4575 0

0.5593 1 0.9352 1 0.1100 0 0.1863 0

0.7725 1 0.1388 0 0.2523 1 0.5504 1

0.2326 0 0.4535 1 0.4439 1 0.8926 1

0.9035 1 0.9419 1 0.0927 0 0.5581 1 0.4251 0 0.7184 1

0.1133 0 0.3802 0 0.4691 1 0.0888 0 0.7327 1 0.0512 0

0.1115 0 0.8765 1 0.5736 1 0.3969 1 0.8710 1 0.5982 1

0.8761 1 0.5340 0 0.5615 0 0.0151 0 0.4445 0 0.3277 0

0.0007 0 0.6593 1 0.1909 0 0.8605 1 0.8864 1 0.0407 0

0.6222 1 0.8266 1 0.2143 1 0.9615 1 0.6384 0 0.2668 1

n=100

La cantidad de datos analizados

Co =66

Número de corridas.

0.4605 0 0.5932 0 0.2672 1 0.7752 0 0.6607 1 0.5557 1

0.0688 0 0.4277 0 0.7684 1 0.0461 0 0.2892 0 0.8139 1

0.9164 1 0.9162 1 0.3218 0 0.1122 1 0.8905 1 0.3261 0

0.3482 0 0.7300 0 0.4765 1 0.7559 1 0.5126 0 0.7949 1

= 66.33 =17.455 √

√ |

|

|

|=0.0789

Como el nivel de confianza es al 95% y como se trata del Z de la distribución normal, entonces. Zα/2=Z0.025=1.96 Comparamos el valor de Z0 con el Zα/2. Siendo Z0

Get in touch

Social

© Copyright 2013 - 2025 MYDOKUMENT.COM - All rights reserved.