ESTRUCTURA Y FUNCIÓN DE AMINOÁCIDOS Y PROTEÍNAS

ESTRUCTURA Y FUNCIÓN DE AMINOÁCIDOS Y PROTEÍNAS 3.1. AMINOÁCIDOS COMO CONSTITUYENTES DE LAS PROTEÍNAS Las células vivas producen gran variedad de mac

1 downloads 54 Views 2MB Size

Recommend Stories


- ESTRUCTURA Y ORGANIZACIÓN DEPORTIVA-
- ESTRUCTURA Y ORGANIZACIÓN DEPORTIVATEMA 1º: EL SISTEMA DEPORTIVO Y SU GESTIÓN Prof. Dr. Eduardo Blanco Pereira (Facultad de Ciencias del Deporte y l

Competencias y Estructura
1 Competencias y Estructura COMPETENCIAS Y ESTRUCTURA 12 COMPETENCIAS Y ESTRUCTURA Consejos Generales del INSS, INSALUD e INSERSO. 1.1. NORMATI

ESTRUCTURA NARRATIVA Y TEMPORAL
ESTRUCTURA NARRATIVA Y TEMPORAL EN CIEN AN OS DE SOLEDAD POR ALFONSO DE TORO Universitit Kiel 0. 0.1 INTRODUCCI6N Base tedrica La estructura tem

Story Transcript

ESTRUCTURA Y FUNCIÓN DE AMINOÁCIDOS Y PROTEÍNAS

3.1. AMINOÁCIDOS COMO CONSTITUYENTES DE LAS PROTEÍNAS Las células vivas producen gran variedad de macromoléculas como son las proteínas, ácidos nucleicos y polisacáridos, entre otros. Estas macromoléculas son biopolímeros constituidos por unidades monoméricas o estructurales. Para los ácidos nucleicos, las unidades estructurales son los nucleótidos; para los polisacáridos son los monosacáridos.

En virtud de que las proteínas desempeñan una amplia variedad de funciones esenciales en los organismos, las cuales describiremos más adelante, es evidente que para conocer tanto el funcionamiento normal como patológico de un organismo se requiere un conocimiento claro de la estructura y propiedades de las proteínas. Aunque muchas proteínas contienen otras sustancias, además de los aminoácidos, la estructura y muchas de sus propiedades biológicas están determinadas por las clases de aminoácidos presentes y el orden en el que están dispuestos en la cadena polipeptídica. Es asombroso que en una célula existan millares de proteínas con estructura y fun-

ción diferentes, pero resulta aún más sorprendente que todas ellas estén integradas por sólo 20 aminoácidos comunes. Los aminoácidos comunes son aquéllos para los que existe un codón específico en el código genético del DNA (ver el capítulo Ácidos nucleicos). Los aminoácidos derivados son generados después de su incorporación a la molécula proteínica. Además de ser las unidades estructurales de las proteínas, los aminoácidos tienen otras funciones importantes como la transmisión de impulsos en el sistema nervioso, como material energético, y otros. 3.1.1.

Estructura general

Desde el descubrimiento del primer aminoácido, asparagina, en 1806, habrían de pasar más de 130 años para que le llegara el turno a la treonina, con la que se cerró la lista de los 20 aminoácidos. Un aminoácido es un compuesto que contiene dos grupos funcionales: un grupo amino y uno carboxüo. Ambos grupos están unidos al mismo átomo de carbono, designado carbono a. Al carbono a de cada aminoácido también está unido un átomo de hidrógeno y

Tabla 3.2. del espárrago, alanina de alantoides) o de alguna propiedad característica (glicina por su sabor dulce). De la denominación trivial ha surgido una abreviatura de tres letras que, dadas las técnicas modernas de secuenciación, han obligado la anotación de los aminoácidos por una sola letra mayúscula (tabla 3.1.). Los aminoácidos presentes en las proteínas pueden clasificarse en dos grandes grupos dependiendo de la polaridad relativa de sus grupos R (tabla 3.2).

3.1.4.1. Aminoácidos con grupo R no polar Los aminoácidos más hidrofóbicos (no polares) son la fenilalanina, leucina, isoleucina, valina, alanina, metionina y triptofano.

Clasificación de los L-a-aminoácidos presentes en las proteínas con base a las polaridades relativas de sus grupos R. Un grupo no polar es aquel que tiene poca o ninguna diferencia de carga de una región a otra, en tanto que un grupo polar tiene una diferencia de carga relativamente grande en diferentes regiones.

La mayoría de las cadenas laterales de los ca, lejos del agua de solvatación de la superaminoácidos más hidrofóbicos están orien- ficie. tadas hacia el interior de la molécula protei-

En la prolina el grupo R es único ya que incorpora el grupo amino en la cadena lateral. Realmente la prolina es un iminoácido que tiene consecuencias estructurales importantes para las proteínas como veremos más adelante. La glicina, el más pequeño de los aminoácidos, puede encajar en regiones de la estructura tridimensional de las proteínas inaccesibles para otros aminoácidos. 3.1.4.2. Aminoácidos con grupo R polar sin carga A este grupo pertenecen aminoácidos cuya cadena lateral tiene naturaleza polar (hidrofi'licá) como son la serina, treonina, cisteína, asparagina, glutamina y tirosina.

3.1.43. Aminoácidos con grupo R polar con carga negativa En esta categoría se encuentran los ácidos aspártico y glutámico. 3.1.4.4. Aminoácidos con grupo R polar con carga positiva Los aminoácidos que pertenecen a este grupo son la lisina, arginina e histidina. Las cadenas laterales de los aminoácidos polares sin carga se encuentran en proporciones significativas tanto en el interior como en la interfase de la proteína con el disolvente. Por el contrario, los aminoácidos polares glutamina y asparagina y los que tie-

nen grupos cargados a pH 7.0 como Usina, arginina, histidina, glutamato y aspartato se hallan predominantemente en la superficie de las proteínas globulares donde la carga se encuentra estabilizada por el disolvente acuoso. La colocación poco usual de una cadena lateral cargada en el interior de una proteína globular se correlaciona con un papel estructural o funcional esencial. Los grupos R con carga de los aminoácidos básicos y acídicos, tienen un papel clave en la estabilización de la conformación proteínica a través de enlaces salinos. Además, funcionan en sistemas enzimáticos que requieren de transmisión de cargas. Ya se ha mencionado el lugar importante de la histidina en la catálisis enzimática en virtud de la carga de su grupo imidazol que le permite funcionar, a pH 7.0, como base o como ácido catalítico. 3.1.5.

3.1.5.1. Ejemplos de importancia La omitiría funciona como intermediario en el metabolismo de la treonina, aspartato y metionina; junto con la citrulina, es un intermediario en la biosíntesis de la urea.

Aminoácidos no proteínicos

Existen aminoácidos que no forman parte de las proteínas pero que realizan importantes funciones en el metabolismo intermediario, o bien, como hormonas, neurotransmisores y otras.

La DOPA (dihidroxifenilalanina) es un aminoácido neurotransmisor, precursor de la melanina y se encuentra en la vía metabólica biosintética de las aminas neurotransmisoras: d o p a m i n a , a d r e n a l i n a y noradrenalina.

molécula de agua y formando un tipo de enlace amida conocido como enlace peptídico (fig-3.8) 3.2.2. Formación El enlace peptídico posee una serie de interesantes características estructurales. Dada la resonancia del grupo carbonilo (-C-), el II o

El ácido gama-aminobutírico (GABA) es un neurotransmisor derivado del glutamato.

enlace peptídico tiene naturaleza de doble enlace parcial.

H2N-CH2-CH2-CH2-COOH GABA 3.2. ENLACE PEPTÍDICO La reacción más importante de los aminoácidos es el enlace peptídico. Este enlace determina la fuerza de unión primaria de una proteína; su estructuración corresponde a una polimerización de aminoácidos, es decir, una proteína es un polipéptido complejo. 3.2.1. Definición El grupo a -carboxilo de un aminoácido (RO puede unirse covalentemente al grupo a amino de otro aminoácido (R2) eliminando una

3.2.3. Estructura del etano Si recordamos la estructura del etano (un enlace C-C) y del etileno (doble enlace C=C) veremos que en el primer caso, los átomos de carbono del etano giran libremente teniendo como eje el enlace sencillo; en cambio, el doble enlace del etileno representa una estructura rígida que impide la libre rotación.

3.2.4 Estructura coplanar El enlace peptídico con la característica de ser un doble enlace parcial, determina una estructura rígida entre carbono y nitrógeno y por lo tanto es un enlace coplanar. En un polipéptido, los carbonos a de aminoácidos cercanos están en situación trans respecto al enlace peptídico.

33. PÉPTIDOS 3.3.1. Definición

3.2.5. Rotación del enlace Así como en el enlace peptídico no puede haber rotación, sí puede haberla en torno a los enlaces C-N y C-C determinando ángulos de conformación (y y

Get in touch

Social

© Copyright 2013 - 2024 MYDOKUMENT.COM - All rights reserved.