EXTRACCIÓN DE PARÁMETROS Y MODELADO DE CARACTERÍSTICAS ELÉCTRICAS DE DIODO UNIÓN P-N Dr. Rodolfo Zola García Lozano Centro Universitario UAEM Ecatepec. Ecatepec, Edo. de Méx.,México
[email protected] Ing. Raúl Sandoval Trejo Tecnológico de Estudios Superiores de Coacalco TESCO. Coacalco, Edo. de Méx., México
[email protected]
Ing. José Alejandro Pineda Aguillón Tecnológico de Estudios Superiores de Coacalco TESCO. Coacalco, Edo. de Méx., México
[email protected]
Área de participación: Licenciatura en Informática
Resumen El presente trabajo muestra el desarrollo del modulo de extracción de parámetros de diodo PN, que forma parte del proyecto titulado “Laboratorio de extracción de parámetros”. El cual conformará una herramienta para el desarrollo y estudio de aplicaciones en el área de la electrónica en el Centro Universitario UAEM Ecatepec.
Introducción El modelado de las características eléctricas de los dispositivos electrónicos tales como los diodos ha sido un tema que se ha estudiado desde hace ya varios años. Para los diodos de unión P-N el modelo desarrollado por Shockley es el comúnmente utilizado. El objetivo del modelado es reproducir, matemáticamente, el comportamiento real de los dispositivos. Para esto es necesario que, a partir de las mediciones experimentales y con base a las expresiones del modelo, se realice un adecuado procedimiento de extracción de parámetros. En este sentido, las herramientas de extracción de parámetros son de vital importancia para que los modelos funcionen adecuadamente. En este trabajo se hace el diseño y desarrollo un programa de extracción de parámetros para diodos de unión P-N, el cual basa su funcionamiento en el modelo matemático de Shockley.
Materiales y Métodos
DIODOS Es un dispositivo formado por la unión de dos materiales semiconductores, uno tipo P (ánodo) y otro tipo N (cátodo). Debido a la interacción de estos materiales, en la primera aproximación del comportamiento eléctrico del diodo se establece que cuando se polariza en directa el dispositivo permite el paso de la corriente, mientras que en condición de polarización inversa se comporta como un aislante (Colinge, 1981). La Fig.1 muestra el símbolo del diodo.
1
Fig.1 Estructura del diodo
La curva característica de un diodo se muestra en la Fig. 2 Como se menciono anteriormente, en la curva característica se pueden observar dos regiones de conducción distintas. Para condiciones de polarización menores al voltaje de umbral del diodo (VT), el dispositivo se comporta como un circuito abierto (no conduce), y por encima de este potencial se comporta como un circuito cerrado con una resistencia eléctrica muy pequeña. Para voltajes de polarización inversa, en los dispositivos reales, el diodo puede alcanzar la región de ruptura (Tyagi, 1991). En estas condiciones la corriente inversa se incrementa debido a diferentes fenómenos, por ejemplo el fenómeno de avalancha. En la Fig. 2Imax representa la corriente máxima que puede conducir el diodo en polarización directa sin sufrir daños, IS es la corriente de polarización inversa del diodo y Vrrepresenta la tensión de polarización inversa de ruptura.
Fig 2 Curva característica del diodo (I-V)
Modelo matemático para diodos P-N El modelo matemático del diodo de unión P-N fue desarrollado por Shockley(Tyagi, 1991) y es el que se utiliza con mayor frecuencia. Para estudiar el modelo por simplificación inicialmente consideraremos que la resistencia serie en el diodo (rs) es igual a cero. Bajo esta consideración, el voltaje aplicado a las terminales del diodo será igual al voltaje en la unión P-N, por lo que la corriente del diodo de unión se describe como una función del voltaje aplicado V D(Tyagi, 1991): ………………………………….……(1)
2
Donde IS es la corriente de saturación, n es el factor de idealidad del diodo, VD es el voltaje a través del la región (carga espacial), q es el valor de la carga del electrón, k es la constante de Boltzmann igual a y T es la temperatura de la unión en grados Kelvin (300 K). Para dispositivos o condiciones de polarización en los que la resistencia serie no puede ser despreciada es necesario utilizar el circuito equivalente del diodo que se muestra en la Figura 3. Como se puede observar, el circuito equivalente está formado por un diodo ideal en serie con una resistencia (rs). Al aplicar un voltaje en las terminales del diodo, la ley de voltajes de Kirchhoff puede expresarse como sigue (Schroder, 2006): ……………………………………………(2)
rs V
VD
Fig. 3 Circuito equivalente del diodo real
De la Fig. 3, la caída de potencial en la unión P-N será igual al voltaje aplicado a las terminales del diodo menos la caída de potencial en la resistencia. De esta forma la ecuación de la corriente del diodo quedará de la siguiente manera:
I I s ( e q (V
D Irs ) / nKT
1)
……………………………...(3)
Esta ecuación describe el comportamiento de un dispositivo idealizado, en el cual la gráfica de su corriente tendría un comportamiento lineal en una escala semilogarítmica. Para dispositivos reales el comportamiento de los diodos es diferente. Por ejemplo, en la Fig. 4 se muestra la corriente del diodo 1N4001 en polarización directa, con escala semilogarítmica. Como se puede observar, para condiciones de polarización directa, a diferencia del comportamiento ideal, en este dispositivo se presentan dos regiones “lineales” diferentes, las cuales se deben a una de las siguientes componentes: 1. Generación/recombinación en la región de carga espacial (scr). 2. Generación/recombinación en las zonas cuasi neutras (qnr). Para representar este comportamiento es necesario que la expresión de la corriente del diodo tome en cuenta los componentes de la corriente debidos a la generación/recombinación en ambas regiones, lo que se puede expresar (Tor A. Friendly, 1998): ……………………….(4) Por otro lado, para valores de VD altos el efecto de la resistencia serie (rs) se observa con la reducción de la pendiente de la curva (Ver Fig. 4).
3
4
Figura 4. Curva I-V del diodo 1N4001
Procedimiento de extracción de parámetros Como mencionamos anteriormente, el funcionamiento adecuado del modelo matemático depende de los parámetros utilizados. Por lo tanto, en esta sección se describirá brevemente una técnica de extracción de parámetros utilizada para el diodo. Inicialmente el procedimiento de extracción de parámetros considera que: Existe solo una de componentes de la corriente y El efecto de la resistencia serie del diodo es despreciable para las condiciones de polarización en las que se hará la extracción. Con base a estas consideraciones puede utilizarse la ecu. 1 para modelar la corriente del diodo. En esta ecuación podemos considerar que para voltajes de polarización del diodo (VD) mayores a 0.1 V el término exponencial de la ecuación será mucho mayor que uno, por lo que la expresión de la corriente del diodo, se puede aproximar a: ………………………………………………(5) Calculando el logaritmo natural en ambas partes y aplicando las leyes de los logaritmos se obtiene: ……………………………………….(6) ……………………………………..(6ª) ………………………………………...(7) De la ecu. 7 se puede observar que el logaritmo de la corriente del diodo tiene un comportamiento lineal. Recordando la ecuación de la recta:
…………………………………………….(8) De las ecuaciones 7 y 8 podemos deducir las expresiones de la pendiente y el intercepto con el eje de las “y”: ………………………………………………..(9) ……………………………………………...(10) La importancia práctica de la deducción de las ecuaciones 9 y 10 radica en el hecho de que a partir de la gráfica semilogarítmica de la corriente experimental de un diodo y mediante la utilización de estas ecuaciones es posible calcular la corriente inversa de saturación (IS) y el factor de idealidad del dispositivo (n).
5 Desarrollo del programa En el siguiente diagrama se muestra el flujo de procesos del programa de extracción de parámetros del diodo (ver Fig. 5). El primer paso es la obtención de los datos experimentales mediante la carga de un archivo (con extensión .dat). En este archivo los datos experimentales están ordenados en dos columnas. La primera de las columnas contiene un listado de las condiciones de voltaje aplicado en la medición. La segunda tiene el registro de las mediciones de corriente del diodo para cada condición de polarización aplicada. Una vez asignados los datos experimentales a las variables se realiza una interpolación de los datos para la presentación gráfica en pantalla en escala lineal y semilogarítmica. Para calcular el factor de idealidad del diodo se utiliza el operador H descrito en la sección de los transistores MOSFET. Por lo tanto se requiere calcular la integral de la corriente de forma numérica. El operador H se obtiene dividendo la integral de la corriente del diodo entre la corriente. Para valores de voltaje de polarización tales que el término exponencial de la expresión de la corriente del diodo es mucho mayor que la unidad, el operador H alcanza un valor constante que es igual al producto del voltaje térmico por el factor de idealidad. El programa de extracción de parámetros calcula la derivada del operador H que servirá de referencia al usuario sobre la región donde el operador H es constante. El usuario selecciona un punto a partir del cual el programa identifica el rango de valores que se encuentran dentro del ±10% del valor seleccionado. Con este rango de valores el programa hace una regresión lineal para calcular el valor de n, al cual se le sacara el logaritmo natural para poder mediante la formula del diodo calcular la corriente IS. Finalmente los datos de la corriente extraída son presentados en una gráfica, en la cual se realiza una comparación entre los datos experimentales con los datos extraídos de la corriente del diodo. Esto con la finalidad de verificar que el procedimiento de extracción de parámetros pueda simular de manera “similar” las condiciones del diodo real.
6
Figura 5a. Diagrama de flujo del programa de extracción de parámetros de Diodo P - N.
7
Figura 5b. Diagrama de flujo del programa de extracción de parámetros de Diodo P - N.
Resultados y Discusión El procedimiento de extracción de los parámetros del diodo se aplicó a las mediciones eléctricas de uniones PN de diferentes materiales. La tabla 1 presenta los dispositivos y las características eléctricas reportadas por los fabricantes en las hojas de especificaciones. Tabla 1. Dispositivos y características
Dispositivo
Características
Diodo 1N4001
- Diodo rectificador de propósito general - Voltaje: 400 Vcc - Corriente: 1 A
Diodo 1N4003
- Diodo rectificador de propósito general - Voltaje: 200 Vcc - Corriente: 1 A
Diodo Zener
- Reguladores de Tensión - 1 Watt - 5 % de tolerancia
Diodo Luminoso Rojo
-Voltaje: 2,1 Vcc -Potencia:31,5 mW -Luminosidad: 80 mcd -Corriente: 15 mA - Diámetro: 5 mm - Voltaje: 2,1 Vcc - Potencia: 31,5 mW - Luminosidad: 80 mcd
- Corriente: 15 mA - Diámetro: 5 mm
Diodo Luminoso Verde La caracterización eléctrica de los diodos se realizó solamente par polarización directa. El rango de voltaje de polarización se definió para cada dispositivo en función del material del que esta fabricado. De tal forma que los diodos de silicio se polarizaron hasta valores cercanos a 0.7 V, mientras que para los diodos emisores de luz (LED) fue necesario aplicar voltajes de polarización mayores. La tabla 2 muestra los parámetros extraídos para cada uno de los diodos analizados. En la Fig. 6, 7, 8, 9 y10 se presentan las curvas I-V experimentales y modeladas en escala semilogarítmica. Como se puede observar, las curas modeladas por la ecuación del diodo, utilizando los parámetros extraídos, corresponden satisfactoriamente con las mediciones experimentales. Tabla 2. Parámetros obtenidos por el módulo del diodo para cada dispositivo
Is Dispositivo
n
Amperes (A)
D4001
1.5015
4.82e-10
Diodo 4003
1.53148 9.25e-10
Diodo Zener
1.96588 6.19e-9
Diodo Rojo
1.93843 5.52e-20
Diodo Verde
2.05892 5.34e-19
Figura 6. Gráficas Diodo 4001 comparación I – V Modelada y Medida.
8
9
Figura 7. Gráficas Diodo 1N4003 comparación I – V Modelada y Medida.
Figura 8. Gráficas Diodo Zener comparación I – V Modelada y Medida.
10
Figura 9. Gráficas Diodo Rojo comparación I – V Modelada y Medida.
Figura 10. Gráficas Diodo Verde comparación I – V Modelada y Medida.
Conclusiones El modelo descrito en la bibliografía para la extracción de parámetros del diodo se aplica da buenos resultados cuando es aplicado para la extracción de parámetros de diodos ideales. Sin embargo, para la extracción de parámetros de diodos comerciales, el modelo descrito en este artículo representa un excelente opción para aquellas personas que trabajen en el área de desarrollo de dispositivos electrónicos, ya que los resultados obtenidos demuestran que la caracterización eléctrica de los diodos utilizados en las pruebas, simula de manera muy precisa el comportamiento real de los dispositivos.
Referencias
11
1
Colinge, J.P. (1981). “Physics of semiductor devices”, Murray Hill, New Jersey, Printed in the United States of America. 2
Tyagi, M.S. (1991).“Introduction to semiconductor materials and devices”, Jonh Sons Inc. Singapore.
Wiley &
3
Dieter K. Schroder, Dieter, K. (2006).“Semiconductor material and device characterization”, A Wiley Interscience Publication IEEE, Printed in the United States of America.
Acerca del Autor Dr. en C. RodolfoZolaGarcíaLozanorecibióelgradode IngenieríaElectrónicadeTecnológicode Estudios SuperioresdeEcatepec(TESE), Méxicoen1996. Obtuvoelgradode doctoradoen Ingeniería Eléctricaen elCentrode Investigación yEstudiosAvanzados(CINVESTAV-IPN), Ciudad de México, en2005. Actualmente trabajacomoProfesor TitularenlaUniversidad Autónomadel Estado de México(UAEM) enEcatepec, Estado de México. Susinteresesde investigación están relacionadosconlos circuitoselectrónicosy la aplicación delos dispositivosde película delgada. Ing. en Comp. Raúl Sandoval Trejo recibió el grado de Ingeniería en Computación de la Universidad Autónoma del Estado de México (UAEM), Ecatepec, en 2009.Actualmente está por concluir estudios de Maestría en Ciencias de la Computación por la UAEM, el presente artículo forma parte de su trabajo de tesis y se encuentra trabajando como profesor de tiempo completo en el Tecnológico de Estudios Superiores de Coacalco (TESCO), sus intereses de investigación están relacionados con el desarrollo de técnicas de extracción de parámetros de dispositivos electrónicos experimentales de dos y tres terminales Ing. en Comp. José Alejandro Pineda Aguillón recibió el grado de Ingeniería en Computación de la Universidad Autónoma del Estado de México (UAEM), Ecatepec, en 2007. Actualmente está por concluir estudios de Maestría en Ciencias de la Computación por la UAEM, el presente artículo forma parte de su trabajo de tesis y se encuentra trabajando como profesor de tiempo completo en el Tecnológico de Estudios Superiores de Coacalco (TESCO), sus intereses de investigación están relacionados con el desarrollo de software enfocado a la instrumentación virtual y desarrollo de tecnología educativa.
Autorización y renuncia Los autores del presente artículo autorizan al Tecnológico de Estudios Superiores de Coacalco (TESCo) para publicar el escrito en la Revista de Divulgación Institucional TESCoatl. El TESCo o los editores no son responsables ni por el contenido ni por las implicaciones de lo que está expresado en el escrito.