FACULTAD DE INGENIERIA MECANICA Y HJECTRICA DIVISION DE ESTUDIOS DE POSTGRADO
PROGRAMACION
NO
LINEAL
POR LIC. RAMON CANTU CUELLAR
T E S I S
EN OPCION AL GRADO DE MAESTRO EN CIENCIAS H DE LA ADMINISTRACION CON ESPECIALIDAD EN INVESTIGACION DE OPERACIONES
SAN NICOLAS DE LOS GARZA, N. L., MAYO 1996
/
I
PROGRAMACION
NO
LINEAL
POR LIC. HAMON ( A N T Ü CUhLLAfc
T E S i S N OPCION \L GRADO DE MAESTRO EN CIENCIA P F LA ADMINISTRACION CON ESPECIALIDAD FN • NVESTÍGACION DE OPERACIONES
y
^
FACULTAD DE INGENIÉ Di VISION DE
Er
Vii J"
PROGRAMACION
NO
LINEAL
POR LIC. RAMON OANTU CUELLAR
T E S I S N OPCION XI GRADO DE MAESTRO EN U E Ne..:-A; DE LA ADMINISTRACION CON ESPECIALIDAD F \ INVESTIGACION DE OPERACIONES
UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERÍA MECANICA Y ELECTRICA DIVISION DE ESTUDIOS DE POST-GRADO
Los m i e m b r o s del Comité d e tesis r e c o m e n d a m o s que la presente tesis realizada p o r el Lic. R a m ó n C a n t ú Cucllar sea aceptada c o m o opción para obtener el grado de M a e s t r o de Ciencias de la Administración con especialidad en investigación de O p e r a c i o n e s .
El C o m i t é de Tesis
División de Estudios de Postgrado M.C. David Oliva Alvarez
San Nicolás de los Garza, N.L. a Diciembre de 1995.
PROLOGO
La programación no lineal se ocupa del problema de optimizar una función objetivo con h. presencia de restricciones tipo de igualdad y/o desigualdad. Si todas las funciones son lineales tenemos un programa lineal de lo contrario, el programa es no lineal y su resolución es el problema de estudio en esta tesis. La popularidad de la programación 'ineal puede atribuirse a muchos factores, incluyendo su habilidad para modelar problemas grandes y complejos, así como la de su resolución en un intervalo razonable de tiempo mediante el uso del método Simplex.
mas recientemente del
método de Karmarkar. y de las computadoras, por parte de los usuarios.
Sin
embargo
muchos
problemas
reales
no
pueden
ser
adecuadamente
representados o aproximados como un programa lineal debido a la naturaleza de la no linealidad de la función objetivo y/o la no linealidad de cualquiera de las restricciones.
Los esfuerzos por resolver tales problemas no lineales en forma eficiente pro\ ocarot) un rápido progreso durante las pasadas tres décadas. Esta tesis presenta estos desarrollos cu una forma lógica e independiente.
Asimismo, esta tesis contiene material de consulta para profesionales que requieren aplicar técnicas de programación no lineal en la re:.:>lución de problemas en sus respectivos campos de trabajo como apoyo o referencia e>- cursos de programación no lineal o de investigación de operaciones que en sus programas de estudio incluyan la programación no lineal.
INDICE
Capítulo
Página
1.-
INTRODUCCION
3
2.-
SINTE-IS
5
3 -
CONCF.PTOS BASICOS DE P R O G R A M A C I O N N O LINEAL
7
4.-
C O N D I C I O N E S DE O P T I M A L I D A D Y D U A L I D A D L A G R A N G I A N A
5.-
15
O P T I M I Z A C I O N N O L I N E A L SIN R E S T R I C C I O N E S
38
A) B U S Q U E D A EN UN I N T E R V A L O SIN D E R I V A D A S
39
B) B U S Q U E D A EN UN I N T E R V A L O C O N D E R I V A D A S
47
M E T O D O S DE B U S Q U E D A M U L T I D I M E N S I O N A L A) SIN UÍ-AR D E R I V A D A S
57
B) U S A N D O D E R I V A D A S
67
fonos DE
87
6.-
Mb
7.-
DIRECCIONES FACTIBLES
M O l K I . O S E S P E C I A L E S D E P R O G R A M A C I O N N O LINE/'.L A) B) C) D)
8.-
57
P R O ü K A M ACION PROGRAMACION PR()( iRAM \C ION PR('(il'.AMAUON