Selectividad Junio 2007 JUNIO 2007

Selectividad Junio 2007 JUNIO 2007 Bloque A 1.- Julia, Clara y Miguel reparten hojas de propaganda. Clara reparte siempre el 20 % del total, Miguel

42 downloads 240 Views 232KB Size

Recommend Stories


2007 Nº 19 JUNIO DE 2009
ISSN 1988-6047 DEP. LEGAL: GR 2922/2007 Nº 19 – JUNIO DE 2009 “IMPORTANCIA DE LA INTERVENCIÓN DIDÁCTICA DEL DOCENTE DE EDUCACIÓN FÍSICA EN EL PROGRA

INDICE DE MATERIAS BIBLIOTECA HISPANICA JUNIO 2007
INDICE DE MATERIAS BIBLIOTECA HISPANICA JUNIO 2007 11 de septiembre de 2001 v. Atentado del 11 de septiembre de 2001 Abate Molina v. Molina, Juan Igna

Story Transcript

Selectividad

Junio 2007

JUNIO 2007 Bloque A 1.- Julia, Clara y Miguel reparten hojas de propaganda. Clara reparte siempre el 20 % del total, Miguel reparte 100 hojas más que Julia. Entre Clara y Julia reparten 850 hojas. Plantea un sistema de ecuaciones que permita saber cuántas hojas reparte cada uno. Sabiendo que la empresa paga 1 céntimo por cada hoja repartida, calcula el dinero que ha recibido cada uno de los tres. 2.- La superficie de media mesa está limitada por las funciones f (x) = x2 y la recta g (x) = 1, estando x expresado en metros. El barniz se vende en botes para cubrir una superficie de 2 metros cuadrados. ¿Cuántos botes necesitaremos comprar para barnizar toda la mesa y cuántos metros cuadrados podríamos barnizar con el barniz sobrante? 3.- El peso de los usuarios de un gimnasio tiene una media desconocida y una desviación típica σ = 5,4 kg. Tomamos una muestra aleatoria de 100 usuarios obteniendo una media de 60 kg. a) Calcula con un nivel de confianza del 95 % el intervalo de confianza para el peso medio de todos los usuarios. b) Se realiza la siguiente afirmación: “el peso medio de un usuario de ese gimnasio está comprendido entre 58,5 y 61,5 kg.”. ¿Con qué probabilidad esta afirmación es correcta? 4.- Dos sucesos tienen la misma probabilidad igual a 0,5. La probabilidad de que ocurra uno de los sucesos sabiendo que ha ocurrido el otro es igual a 0,3. ¿Cuál es la probabilidad de que no ocurra ninguno de los dos sucesos? Bloque B  6 − ay   y a  x y  , B =   , C =  , D =  1.- Sean las matrices A =   1− a   ay  1 0 y a) Consideramos x e y dos variables, y a un parámetro. Obtén el sistema de dos ecuaciones y dos incógnitas que resulta de plantear AB – C = D. b) Estudia el sistema para los distintos valores de a. c) Encuentra una solución para a = 2. 2.- Una discoteca abre sus puertas a las 10 de la noche sin ningún cliente y las cierra cuando se han marchado todos. Se supone que la función que representa el número de clientes (N) en función del número de horas que lleva abierto, t, es: N (t) = 80 t – 10 t 2. a) Determina a qué hora el número de clientes es máximo. ¿Cuántos clientes hay en ese momento? b) ¿A qué hora cerrará la discoteca? 3.- El tiempo en minutos transcurrido hasta que una persona es atendida en la sucursal A de un banco sigue una distribución normal de media µ = 9 y desviación típica σ = 1, mientras que el tiempo transcurrido hasta que es atendido en la sucursal B sigue, también, una distribución normal de media µ = 8,5 y varianza σ2 = 4. a) Si un cliente tiene que hacer una gestión bancaria y sólo dispone de 10 minutos, ¿en qué sucursal A o B será más fácil que le hayan atendido en el tiempo que dispone? b) ¿Cuánto debe valer x si sabemos que el 80 % de los clientes que van a la sucursal B esperan más de x minutos? c) Un cliente, teniendo en cuenta la proximidad de estas dos sucursales a su casa, elige ir a la sucursal A con probabilidad 0,3 y a la sucursal B con probabilidad 0,7. Eligiendo una de las visitas al banco de este cliente al azar, ¿cuál es la probabilidad de que el cliente haya tenido que esperar más de 10 minutos?

Dpto. Matemáticas

1/7

IES “Ramón Olleros”

Selectividad

Junio 2007

4.- En una joyería hay dos alarmas. La probabilidad de que se active la primera es 1/3, de que se active la segunda es 2/5 y de que se activen las dos a la vez es 1/15. ¿Cuál es la probabilidad de que se active alguna de las dos? ¿Y de que no se active ninguna una de ellas? SOLUCIONES 1.- Julia, Clara y Miguel reparten hojas de propaganda. Clara reparte siempre el 20 % del total, Miguel reparte 100 hojas más que Julia. Entre Clara y Julia reparten 850 hojas. Plantea un sistema de ecuaciones que permita saber cuántas hojas reparte cada uno. Sabiendo que la empresa paga 1 céntimo por cada hoja repartida, calcula el dinero que ha recibido cada uno de los tres. Solución: Planteemos a partir de los datos el sistema de ecuaciones. Sean x, y y z el número de hojas que reparten Julia, Clara y Miguel respectivamente. Tendremos entonces: • • •

Clara reparte siempre el 20 % del total Miguel reparte 100 hojas más que Julia Entre Clara y Julia reparten 850 hojas

⇒ ⇒ ⇒

y = 0,20 (x + y + z) z = x + 100 x + y = 850

Escribiendo de otra manera estas ecuaciones tenemos: x − 4 y + z = 0  − x + z = 100  x + y = 850 

Despejando y y z de la segunda y tercera ecuaciones y sustituyendo en la primera obtenemos:  z = x + 100   y = 850 − x



x – 4(850 – x) + (x + 100) = 0



6x = 3300



x = 550

Por tanto: • Julia reparte 550 hojas. • Clara reparte 300 hojas (y = 850 – 550 = 300) • Miguel reparte 650 hojas (z = 550 + 100 = 650) Si le pagan un céntimo por hoja repartida, entonces cada uno de ellos gana: • Julia: 5,5 € • Clara: 3 € • Miguel: 6,5 €

Dpto. Matemáticas

2/7

IES “Ramón Olleros”

Selectividad

Junio 2007

2.- La superficie de media mesa está limitada por las funciones f (x) = x2 y la recta g (x) = 1, estando x expresado en metros. El barniz se vende en botes para cubrir una superficie de 2 metros cuadrados. ¿Cuántos botes necesitaremos comprar para barnizar toda la mesa y cuántos metros cuadrados podríamos barnizar con el barniz sobrante? Solución: Necesitaremos saber cuál es la superficie de la mesa. Esta vendrá dada por el doble del área encerrada por las gráficas de las funciones f (x) = x2 y g (x) = 1. Pero en las condiciones del problema, y dado que x está expresado en metros, se debe cumplir que para ambas funciones debemos considerar que su dominio es: Dom f (x) = Dom g (x) = [0, +∞). Calculemos la superficie de la mesa: Estudiemos los puntos de corte de ambas gráficas, esto es, los puntos en los que: f (x) = g (x) f (x) = g (x)

(La representación gráfica de las funciones no es necesaria, sin embargo nos ayuda a ver mejor el área que debemos calcular)



x2 = 1



x=±1

El punto x = –1 no tiene sentido en as condiciones del problema, puesto que x es una longitud y por tanto como dijimos anteriormente, ha de ser positiva. Así pues, el área de media mesa es: 1

 x3  − = (1 − x ) dx = x  ∫0 3  0  1

2

2 2  1 1 −  − (0) = m 3  3

 2 4 = = 1,3 m2 3 3 Se deduce que será necesario comprar un bote para barnizar toda la mesa. Con el barniz sobrante   podríamos barnizar: 2 – 1,3 = 0, 6 m2.

Por tanto, el área de la mesa entera es: A = 2 ·

3.- El peso de los usuarios de un gimnasio tiene una media desconocida y una desviación típica σ = 5,4 kg. Tomamos una muestra aleatoria de 100 usuarios obteniendo una media de 60 kg. a) Calcula con un nivel de confianza del 95 % el intervalo de confianza para el peso medio de todos los usuarios. b) Se realiza la siguiente afirmación: “el peso medio de un usuario de ese gimnasio está comprendido entre 58,5 y 61,5 kg.”. ¿Con qué probabilidad esta afirmación es correcta?

Solución: σ σ   , x + zα / 2 · a) El intervalo de confianza pedido será de la forma  x − zα / 2 ·  , en el que x = 60 kg, n n  n = 100 y para una confianza del 95 % le corresponde un z α / 2 = 1,96. Así pues: σ σ  5, 4 5, 4  I =  x − zα / 2 · , x + zα / 2 · , 60 + 1,96 · ) = (58,9461;61,0584)  = (60 – 1,96 · n n 100 100  Dpto. Matemáticas

3/7

IES “Ramón Olleros”

Selectividad

Junio 2007

b) Si nos piden la probabilidad con la que la esta afirmación “el peso medio de un usuario de ese gimnasio está comprendido entre 58,5 y 61,5 kg” es correcta, calculemos: P (58,5 < X < 61,5) X −µ Vamos a tipificar la variable con el cambio: Z = σ 61,5 − 60   58,5 − 60 P (58,5 < X < 61,5) = P  ≈ P (−0,28 < Z < 0,28) = x) = 0,80

Dpto. Matemáticas



6/7

PB (X ≤ x) = 0,20

IES “Ramón Olleros”

Selectividad

Junio 2007

Por tanto, tipificando: x − 8,5   PB (X ≤ x) = PB  Z ≤  = 0,20 2  

El valor de Z que corresponde a esta probabilidad es Z = –0,84 (P (Z ≤ – a) = 1 – P (Z ≤ a)) y de aquí se deduce que: x − 8,5 = –0,84 2



x = –0,84 · 2 + 8,5 = 6,82 minutos.

c) La probabilidad de que el cliente haya tenido que esperar más de 10 minutos viene dada por: P (>10) = P (A) · P (>10 / A) + P (B) · P (>10 /B) = 0,3 · 0,1587 + 0,7 · 0,2266 = 0,2062

Nota: P (>10 / A) = 1 – P (

Get in touch

Social

© Copyright 2013 - 2024 MYDOKUMENT.COM - All rights reserved.