TRABAJO FIN DE GRADO ANÁLISIS Y DIMENSIONAMIENTO DE VIADUCTOS EMPUJADOS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA UNIVERSIDAD DE SEVILLA TRABAJO FIN DE GRADO ANÁLISIS Y DIMENSIONAMIENTO DE VIADUCTOS EMPUJADOS Autor: Santiag
Author:  Lorena Paz Montoya

0 downloads 27 Views 19MB Size

Story Transcript

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA UNIVERSIDAD DE SEVILLA

TRABAJO FIN DE GRADO ANÁLISIS Y DIMENSIONAMIENTO DE VIADUCTOS EMPUJADOS

Autor: Santiago Alonso Segovia Tutor: Dr. D. Fernando Medina Encina Departamento: Mecánica de Medios Continuos y Teoría de Estructuras Titulación: Grado en Ingeniería Civil

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Índice General Introducción. Puentes vs Viaductos ................................................................... 3 Parte I ............................................................................................................... 4 Parte II ............................................................................................................ 34 Bibliografía .................................................................................................... 114 Anexo I: Planos de Armado ........................................................................... 115 Anexo II: Hojas de Cálculo ............................................................................. 117

1

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Introducción: Puentes vs Viaductos En primer lugar aclararemos la diferencia existente entre un puente y un viaducto, esto se muestra como apropiado debido a la confusión existente entre los dos términos, confusión basada en las enormes similitudes que presentan ambas tipologías estructurales. La palabra viaducto designa a una estructura que cruza un valle, de modo que el elemento condicionante a la longitud del mismo será el hueco del valle y no el curso de agua que pueda circular bajo el mismo. El nacimiento de los viaductos coincide prácticamente con el desarrollo de las vías ferroviarias durante el siglo XIX. Este desarrollo genera repentinamente una necesidad de realizar obras con un importante desarrollo y situadas a una altura significativa respecto del suelo debido a las necesidades en cuanto a trazado requeridas por la infraestructura ferroviaria (radios de curvatura reducidos, pendientes suaves…). En España el primer ejemplo histórico lo encontramos en los acueductos romanos, construidos para permitir el paso de una conducción de agua, y es que acueductos como los de Segovia y Mérida nos siguen asombrando hoy en día. Por otro lado los viaductos destinados a la circulación ferroviaria fueron desarrollados especialmente durante la revolución industrial. En todo caso los viaductos son puentes, estos no solo permiten el paso de un curso natural de agua por debajo del mismo sino que cumplen a la perfección su función principal como obra de paso de servir como elemento comunicador y facilitador de la vida en todas las direcciones, abrazando la totalidad del valle. Por lo tanto es importante destacar el componente social que poseen este tipo de obras, permitiendo una comunicación que juega un papel fundamental tanto en el desarrollo económico, industrial y humano. Durante el presente proyecto se usará indistintamente la palabra viaducto como puente, al poseer el mismo significado en los contextos de cálculo realizados.

2

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Parte I: Construcción Evolutiva de Puentes 1.

Introducción .......................................................................................................... 5

2.

Puentes Construidos con Tablero ``In Situ´´............................................................ 5 2.1

Cimbras........................................................................................................... 5 2.1 Cimbras apoyadas en el suelo ................................................................... 5 2.1 Cimbras autoportantes .............................................................................. 6 2.2 Problemática derivada de la construcción por tramos.................................. 7

3.

Puentes Construidos con Tablero ``In Situ´´............................................................ 7 3.1 Sección Transversal ....................................................................................... 7 3.2 Morfología Longitudinal ................................................................................ 8 3.2.1 Tableros Bi-Apoyados .......................................................................... 8 3.2.2 Tableros Continuos .............................................................................. 8 3.2.2.1 Continuidad Encima de la Pila ...................................................... 9 3.2.2.2 Continuidad a Cuartos de la Luzsa ............................................... 9

4.

Puentes Empujados ............................................................................................. 10 4.1 Introducción ................................................................................................ 10 4.2 Procedimientos de Empuje .......................................................................... 10 4.2.1 Translación Transversal...................................................................... 10 4.2.2 Giro ................................................................................................... 11 4.2.3 Traslación Vertical ............................................................................. 11 4.2.4 Empuje Según su Propio Eje ............................................................... 11 4.3 Descripción y Elementos del Sistema Constructivo ...................................... 13 4.3.1 Parque de Prefabricación ................................................................... 13 4.3.2 Medios de Empuje ............................................................................. 17 4.3.3 Medios de Empuje ............................................................................. 19 3

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

4.3.4 Nariz o Pico de Avance ....................................................................... 22 4.4 Problemática Derivada del Proceso de Empuje ............................................ 23 4.4.1 Parque de Prefabricación ................................................................... 23 4.4.2 Control de Deformación en Pilas ........................................................ 26 4.4.3 Paso del Pico o Nariz de Avance Sobre las Pilas .................................. 27 4.4.4 Control Topográfico ........................................................................... 29 4.4.5 Sistema de Retenida .......................................................................... 29 5.

Puentes Construídos Por Voladizo Sucesivo ......................................................... 30 5.1 Dovelas Prefabricadas ................................................................................. 30 5.2 Dovelas ``In Situ´´......................................................................................... 32

4

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

1. Introducción Los procesos constructivos de puentes han atravesado muchas etapas a lo largo de la historia, ya que la necesidad de salvar un obstáculo ha estado siempre presente y ha sido un punto importante de cara al crecimiento y el desarrollo de civilizaciones al permitir la comunicación y con ella, el comercio. Las diversas tipologías de puentes, aunque tengan como objetivo común el señalado en el párrafo anterior se diferencia tanto en el proceso constructivo como en la forma de resistir las solicitaciones a las que se encuentra sometida. De esta forma dependiendo de las características de cada obra en concreto algunas tipologías se postularán como más idóneas que otras. A continuación pasaremos a describir los procesos constructivos más empleados en la actualidad haciendo especial énfasis en los puentes construidos por empuje sucesivo, al ser el objeto de dicho trabajo la descripción y puesta a punto de un proceso metodológico para el análisis y dimensionamiento de viaductos y puentes empujados.

2. Puentes Construidos con Tablero ``In Situ´´ La multitud de procedimientos que se pueden emplear de cara a la construcción de tableros in situ tienen en común la presencia de dos elementos. Por un lado el encofrado que da forma al hormigón y el encofrado que lo sostiene en su sitio. 2.1. Cimbras

Podemos distinguir dos clases de cimbras, las que transfieren la carga al suelo y las cimbras autoportantes que mediante una estructura auxiliar transmiten sus cargas a los elementos estructurales del puente, trabajando con independencia del suelo. Por otro lado, las cimbras que se apoyan en el suelo presentan disposiciones diferentes en función de las dimensiones de la obra. 2.1.1 Cimbras apoyadas en el suelo

Como ya hemos dicho dependerán de la escala de la obra. En su grado más bajo nos encontramos con cimbras de tubos metálicos o de madera, sobre las que se apoya el encofrado. Estos tubos se apoyan sobre unos tablones de madera o pequeñas cimentaciones de hormigón. Se pueden usar en rangos de alturas hasta los 8-10 metros. Si el puente tiene varios vanos la construcción se realizará vano a vano, encimbrando y encofrando exclusivamente la longitud del dintel comprendida entre dos secciones situadas a cuartos de la luz de dos vanos sucesivos. Una vez el tramo ya se encuentra hormigonado se pretensa, descimbra y desencofra, pasando la cimbra y el encofrado al tramo siguiente. De esta forma se economiza en gran medida el proceso, al reducir el gasto en cimbra y encofrado.

5

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Cimbra Apoyada en el Suelo

Cuando la altura a la que se encuentra el tablero es muy elevada el empleo de tubos es antieconómico al tener que colocarse a distancias muy reducidas. En estos casos se emplea un tipo de cimbra constituida por casilletes metálicos de mayor rigidez a flexión debido a su arriostramiento interno y vigas en celosía situadas entre casilletes o entre casilletes y pilas definitivas. Con este tipo de cimbras se han alcanzado alturas de hasta 40 metros. 2.1.2 Cimbras autoportantes

Es un procedimiento mucho más sofisticado que el anterior y en él se encuentran automatizadas las operaciones de cimbrado, nivelación, ajuste del encofrado y descimbrado. Otra de las principales ventajas es la eliminación de la dependencia del suelo, siendo idóneo cuando las características del suelo no permiten la colocación de cimbras apoyadas en el mismo o cuando el tablero se encuentra en una posición muy elevada. Tiene el inconveniente de que presenta un mayor coste económico, siendo apto el procedimiento en puentes con una longitud mayor de 600 metros. El rango normal de luces oscila entre los 30 y 40 metros, aunque se han construido puentes con luces de 60 m. El número de vigas y su tamaño dependerá de la carga del puente y de la luz de la viga en su fase de encofrado.

6

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Cimbra Autoportante

2.2 Problemática derivada de la construcción por tramos

Esta problemática, también se encuentra presente en gran medida en los puentes construidos por empuje sucesivo, tal y como se detallaremos más adelante. En los puentes construidos tramo a tramo, a diferencia de los construidos de una sola vez, se plantea un problema derivado del peso propio estructural, difiriendo en gran medida las leyes de momentos flectores en ambos casos. Otro problema planteado es la evolución de esa ley de momentos flectores como consecuencia de la actuación de la fluencia y la retracción.

3. Puentes Construidos con Vigas Prefabricadas El empleo de elementos lineales prefabricados en la construcción de puentes ha sido uno de los métodos más empleados tradicionalmente. Este procedimiento es normalmente empleado en la construcción de puentes de luces reducidas que en raras ocasiones superan los 50 metros. Se ha producido un desarrollo de estos métodos en dos direcciones, ambas propiciadas por el empleo de medios tecnológicos cada vez más avanzados, en primer lugar en lo que afecta a la sección transversal del tablero y en segundo lugar en lo que afecta a la morfología longitudinal del puente. 3.1 Sección Transversal

En primer lugar se desarrolló la construcción mediante el empleo de vigas en doble T separadas entre sí del orden de 3 a 4 metros y luces máximas alrededor de los 40 metros. Esta tipología constituye una solución barata y eficaz. El procedimiento más habitual es la colocación de encofrados de madera u hormigón (losas prefabricadas), losas que también pueden proyectarse con una cierta capacidad resistente de manera que constituyan la cabeza de tracción de la losa que se formará conjuntamente con el hormigón in situ.

7

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Mo Puente con Vigas Prefabricadas en Doble T

Esta tipología está siendo sustituida actualmente por el empleo de vigas ``artesas´´, que presentan una resistencia y un peso propio mucho mayores, pudiendo resistir con una o dos vigas anchuras de tablero entre 12 y 25 m. Una de sus mayores ventajas es la gran resistencia que presentan a la torsión. Una de las tendencias actuales en cuanto a la prefabricación del tablero es la colocación de losas macizas de hormigón sobre las vigas prefabricadas, realizándose la conexión entre sí mediante orificios especialmente planteados donde penetra la armadura pasiva de las vigas. Otra opción sería el empleo de una única viga ``artesa´´ para tableros de alrededor de 10 a 12 metros de anchura. Esta solución suele requerir el empleo de hormigones con una gran resistencia, con objeto de reducir el gran peso propio de las vigas.

Al emplear únicamente una viga podemos encontrarnos con que la gran longitud de los voladizos de las losas superiores ocasiona un problema derivado del gran peso propio de la misma, problema que se soluciona mediante un apuntalamiento transversal. 3.2 Morfología Longitudinal

El problema fundamental a resolver en todas las morfologías existentes es la unión longitudinal de elementos prefabricados. 3.2.1 Tableros Bi-Apoyados

Es la morfología más empleada. En ella las vigas se apoyan sobre los pilares por medio de apoyos de neopreno y sobre ellas se hormigona el tablero (el hueco que quede entre vigas prefaricadas también será hormigonado). Se pueden disponer de uniones a media madera, cuyo objetivo principal es la de ocultar la viga cabezal situada sobre las pilas dentro del espesor del tablero.

8

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Esta unión aumenta el coste ya que es necesario colocar una armadura complementaria que resuelva los esfuerzos locales de dicha zona. Transversalmente se pueden colocar elementos prefabricados con costillas o apuntalamientos. Los tableros bi-apoyados tienen el inconveniente de que generan un excesivo número de juntas transversales. Estas juntas son eliminadas en los puentes semi-apoyados en los que los tableros semi-continuos establecen una continuidad entre los vanos pero exclusivamente a un nivel de la losa superior, eliminando de esta forma las juntas de dilatación del pavimento. 3.2.2 Tableros Continuos

Esta continuidad entre elementos puede realizarse de dos formas. Sobre las pilas y a cuartos de luz. 3.2.2.1 Continuidad encima de la pila

Tiene la ventaja de que presenta una gran facilidad constructiva a pesar de tener una eficacia restringida. En los tableros semi-continuos la continuidad de realiza exclusivamente mediante la losa, lo que apenas varía los esfuerzos que las vigas principales tendrían si estuvieran simplemente apoyadas. En los tableros continuos se realiza la continuidad tanto de la losa como de las vigas, de forma que para las cargas externas éste se comportará como un puente continuo, lo que no ocurre con el peso propio, que funciona como tableros simplemente apoyados. El armado de continuidad puede realizarse mediante la armadura pasiva tanto en la losa superior como en el talón inferior de las vigas.

3.2.2.2 Continuidad a cuartos de luz

El tablero se divide en dos tipos de vigas longitudinales, la primera situada sobre la pila y la segunda constituyendo el tramo intermedio entre pilas. El punto de unión se encuentra a L/4 por lo que ambas vigas tendrán una longitud igual a L/2. La unión entre vigas se puede realizar de distintas maneras, pero todas ellas deberán garantizar un empotramiento perfecto, ya que una unión articulada haría inestable el puente.

Esquema Dovelas en Tablero Construido con Continuidad a Cuartos de Luz. Fuente: Elaboración Propia

9

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

4. Puentes Empujados Introducción

Este método se basa en la idea de realizar la construcción en una zona de fácil acceso, y una vez construidos trasladarlos a su posición definitiva. Este método ha sido empleado en gran medida en la construcción de las nuevas líneas de ferrocarriles de Alta Velocidad en España ya que dichas obras imponen un trazado con unas altas exigencias de trazado, tanto en alzado como en planta, en general con una gran longitud y altura de pilas. A modo de ejemplo destacaremos el tramo de Alta Velocidad Madrid-Lérida que posee una totalidad de 94 puentes, con longitudes entre 20 y 2238 metros y luces entre 18 y 120 metros. Su desarrollo se produce en la segunda mitad del siglo XIX de cara a la construcción de viaductos metálicos de gran tamaño usados en el desarrollo de vías ferroviarias. La a parición de materiales como el teflón, con un coeficiente de rozamiento muy bajo y de grandes atos hidráulicos capaces de movilizar pesos de mucha mayor magnitud hace que en 1959 (Ager,Austria) se construye el primer viaducto empujado de hormigón pretensado, poco después, en 1963 se construye el puente sobre el Río Caroni en Venezuela que es más conocido al figurar a menudo como el primero en la bibliografía. Lo que sí es claro que a partir de ese momento el empleo de dicha técnica constructiva no ha cesado su expansión, aumentando la longitud a luces entre 60 y 70 metros. Cabe señalar que la rentabilidad de dicho método depende de que la longitud y del número de puentes que se vayan a construir deberá tener la suficiente magnitud para que se compensen los grandes medios mecánicos que dicho procedimiento requiere. Podemos realizar una clasificación considerando el movimiento elemental realizado de cara al traslado del puente a su posición definitiva, esto es, trasladarlos según su eje, riparlos transversalmente, construirlos en posición elevada para posteriormente descenderlos y girarlos sobre uno o varios ejes dependiendo del caso en cuestión. 4.1 Procedimientos de Empuje

4.1.1 Translación Transversal Dicho procedimiento consiste en la construcción del puente en una posición inicial y el posterior traslado transversal del mismo a su posición definitiva. Para que dicho procedimiento posea interés deberán existir claras ventajas en su realización como podría ser la necesidad de sustitución de un puente que se encuentre en servicio por otro nuevo en un intervalo de tiempo muy reducido (pocas horas), como podrían ser los puentes de ferrocarril. Después de la construcción en la posición inicial, la cual se puede realizar en el tiempo que sea necesario, se colocará un camino de rodadura para su traslado a la posición final.

10

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Este camino de rodadura podrá ser por ejemplo un muro sobre el que se colocan unas vías en ``U´´ con unas almohadillas de neopreno que faciliten el deslizamiento, siendo los coeficientes de rozamiento en torno al 3%. La fuerza necesaria para realizar el desplazamiento tiene un valor altísimo, debido a las grandes magnitudes de los pesos desplazados. Se emplean para ello gatos hidráulicos que alcanzan velocidades entre 5 y 10 metros por hora. Este procedimiento ha sido empleado tanto en puentes rectos, atirantados como en puentes en arco. 4.2.3

Giro

Este procedimiento se basa principalmente en la construcción del puente paralelamente a la orilla del río para la realización a posteriori la operación de giro con la que se alcanza la posición definitiva. El puente gira sobre un camino de rodadura circular con un diámetro tan que permita la estabilidad de las operaciones, para la rodadura en el propio cauce del río se recurre a la ayuda de la flotación. Una vez que la estructura se encuentre en su posición definitiva se intercambian los apoyos móviles por lo definitivos. Esta operación se ha realizado en multitud de pasarelas, puentes rectos y atirantados. 4.2.4

Translación Vertical

Este procedimiento se realiza en situaciones especiales como el caso en el que no existiera gálibo suficiente bajo el puente para la colocación de las cimbras, para ello el tablero se construye en una posición elevada donde la cimbra no impedirá el paso del tráfico rodado para el posterior descenso a su posición definitiva. En la primera de las fases el tablero se encuentra apoyado en un bloque de madera, de cara a proceder al descenso se activa un gato hidráulico que eleva el puente de forma que se pueda retirar una de las piezas de madera que lo soportan, procediéndose al descenso con el gato hasta que se apoye en la segunda fila de maderas con lo que nos encontramos de nuevo en la posición inicial. Cabe destacar la importancia de que las torres sobre las que se apoya el tablero posean la estabilidad suficiente para soportar el peso del mismo (estas también pueden ser de hormigón prefabricado). 4.2.5

Empuje según su propio Eje

A diferencia de los métodos comentados anteriormente que se corresponden con situaciones particulares de cada una de las construcciones, el método aquí descrito y mediante el cual se realizará el proyecto bajo estudio es un proceso que se ha normalizado de tal forma que ha día de hoy constituye un procedimiento normal de construcción de puentes.

11

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

La base del proceso constructivo a realizar reside en la preparación de un parque de fabricación fijo en el principio del eje del propio puente, allí se realiza la fabricación de las dovelas que poseen entre 15 y 20 metros de longitud. El proceso de construcción de dovelas se realiza de forma constinua, esto es, una vez que el hormigón de la primera de ellas ha endurecido se empuja mediante el empleo de gatos hidráulicos, dejando libre a su vez el molde para la fabricación de la segunda dovela. Este proceso continúa de forma sucesiva, siendo el pretensado el encargado de realizar la unión. A continuación realizaremos un análisis en profundidad de los inconvenientes y los aspectos problemáticos que se presentan a lo largo del proceso constructivo

Esquema de Empuje. Fuente: [2]

Existe una variante al procedimiento descrito, esto es el empuje completo, en cual el puente o bien fabricado totalmente en uno de los extremos o bien se construyen sendas mitades en cada uno de los extremos, empujándose en un solo paso la totalidad de la obra. Cabe destacar la problemática existente en los puentes empujados de trazado curvo, pues el único trazado posible es el circular ya que de otra forma se hace imposible el encaje del tablero con las pilas.

12

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

4.3 Descripción y Elementos del Proceso Constructivo De cara al correcto empuje del tablero serán necesarios una serie de condiciones y de elementos auxiliares sin los cuales la construcción no sería posible, estos son: o o o o

Parque de Fabricación Gatos de Empuje Apoyos Nariz o Pico de Avance

Una de las condiciones de mayor importancia reside en la realización de un correcto replanteo tanto en alzado como en planta con unos errores que deberán oscilar entorno a 1mm. Esto es de vital importancia en la llegada del tablero a la pila, donde un incorrecto replanteo puede hacer que el desnivel vertical al que se encuentra la nariz no pueda ser compensado por el gato, chocando esta con la pila. Esto obliga a la toma de medidas extraordinarias. 4.3.1

Parque de Fabricación

En primer lugar cabe destacar la diferencia entre los parques de fabricación de puentes metálicos y los homólogos en puentes de hormigón. En el caso metálico se trata exclusivamente de una zona en la que se realizan tareas de montaje, alineado y nivelado de elementos prefabricados. Para puentes de hormigón este parque tiene una complejidad mayor derivada principalmente de la construcción in situ de las propias dovelas. Dentro de la misma observamos tres partes diferenciadas: en primer lugar la zona de hormigonado, la zona de deslizamiento y la zona de estribo, lugar destinado a los gatos encargados del procedimiento de empuje.

Esquema del Parque de Prefabricación. Fuente: [5]

En la figura anterior las zonas I y II corresponden a la zona de hormigonado, siendo la zona I donde se fabrica la parte inferior del cajón o losa de fondo y la zona II la destinada a la parte superior del cajón tanto las almas como los voladizos de la sección estructural. A continuación detallaremos el ciclo típico seguido en el procedimiento de fabricación y empuje. Este comienza por la preparación de los encofrados de la bancada y finaliza con el empuje de la dovela, pudiendo realizar una descomposición del proceso en las siguientes fases:

13

Análisis y Dimensionamiento de Viaductos Empujados

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

o

Santiago Alonso Segovia

Posicionamiento y limpieza de los encofrados externos. Montaje de la jaula de ferralla en la losa inferior y almas. Montaje de los encofrados interiores de las almas. Hormigonado de losa de fondo y almas. Desencofrado de los encofrados interiores de las almas. Desplazamiento del carro del encofrado de techo que se posicionará desde la dovela anteriormente construida. Ferrallado de alas y losa de techo. Hormigonado de alas y losa de techo. Curado y desencofrado. Tesado del pretensado de empuje. Empuje y final de ciclo.

Zona de Hormigonado (I y II): En las primeras obras construidas con el método estudiado se procedía al montaje completo de la estructura en la parte posterior del estribo, procediéndose por lo tanto al empuje de la misma en un solo paso. Este procedimiento ya no es empleado en la actualidad en puentes de hormigón (sí en metálico). En ella es donde se realiza la fabricación de cada una de las dovelas que componen el puente, es una zona de especial importancia ya que en ella se determinará la zona inferior de las secciones estructurales, cuya correcta nivelación es de vital importancia de cara a un buen desarrollo del proceso de empuje. Así se deberán garantizar niveles de error en dicha zona inferiores a 1 mm. Si esto no se consigue se dificultará en gran medida el proceso de deslizamiento ya que existirían unas presiones diferentes en cada uno de los apoyos de la pila derivadas de la diferencia de cota entre ambos lados. Para tal fin el encofrado inferior estará constituido por una suela metálica constituida por una serie de perfiles metálicos longitudinalmente colocados de forma que hagan de sustento a una capa superior con un tratamiento superficial que haga que su superficie sea lo más plana posible, evitando errores superiores a 1 mm. Esta chapa metálica y los perfiles longitudinales descansarán sobre unos perfiles transversales que a través de una serie de tornillos de nivelación son los encargados de tal fin. Como ya hemos citado anteriormente de la precisión en dicha tarea dependerá el correcto procedimiento de empuje.

14

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Chapa Metálica y Parque de Fabricación. Fuente: [2]

Considerando ahora los esfuerzos de empuje, existen varios métodos por los que pueden ser reducidos, bien podemos optar por la reducción del peso propio estructural o la disminución del rozamiento mediante la aplicación de elementos que faciliten el deslizamiento. De cara a reducir el peso de las dovelasen el procedimiento de empuje anteriormente se realizaba el hormigonado de las dovelas en dos partes, es decir, en la planta de fabricado se hormigona exclusivamente la parte inferior siendo la superior hormigonada una vez que ya se ha realizado el empuje. Esta solución ya no es empleada en la actualidad debido principalmente a la retracción diferencial existente entre ambas zonas, y es que la diferencia de tiempo entre el hormigonado de ambas (aproximadamente 15 días) ocasiona una fisuración vertical en la zona superior y en el contacto entre zonas. Esto se convierte claramente en innecesario debido a la gran capacidad de carga de los gatos hidráulicos empleados actualmente en el empuje. De cara a la reducción del coeficiente de rozamiento se pueden emplear una serie de chapas metálicas colocadas sobre una serie de bandas de deslizamiento del encofrado, de forma que mediante un correcto engrasado de la superficie de contacto entre las bandas de deslizamiento y la propia chapa con un grasa de bajo rozamiento que hace que la fuerza necesaria para sacar la dovela del parque disminuya. Otro sistema consistiría en impregnar las bandas de deslizamiento con una grasa de silicona, lo que provoca una reducción del rozamiento entre el hormigón y las bandas de deslizamiento. Inicialmente, una vez hormigonada la dovela se descendía todo el parque de fabricación para dejarla de esta forma colgada de la dovela ya hormigonada. Este procedimiento no es empleado en la actualidad debido que presenta varios problemas, en primer lugar la necesidad de realizar una nivelación exhaustiva una vez que el parque de fabricación volviera s su sitio y en segundo lugar era necesario armar convenientemente una dovela que colgaba de la dovela hormigonada anteriormente.

15

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Detalle del Encofrado. Fuente [2]

Posteriormente al hormigonado se deberá esperar un tiempo de cara a que se produzca el correcto curado del hormigón, por lo que se realizará el desencofrado de las dovelas cuando haya alcanzado la resistencia precisa para que se pueda realizar el proceso de pretensado. Esto ocurre a edades muy tempranas del hormigón. La longitud de dicha zona dependerá de la longitud que presenten las dovelas construidas. Se deberá garantizar que dicha longitud será tal que exista el contrapeso necesario antes de que la dovela alcance la primera pila que haga que no se produzca el vuelco de la misma. La armadura pasiva se preparará con antelación en talleres de ferralla en elementos de la misma longitud que los elementos a hormigonar.

.. Detalle del Ferrallado, Revista de Obras Públicas. Fuente [3]

16

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

o

Zona de Deslizamiento: Esta zona es la comprendida entre el estribo y la zona de hormigonado cuyo objetivo es evitar que se produzca el vuelco del puente cuando la nariz de avance no haya alcanzado la primera de las pilas. Con su peso deberá crear un momento estabilizador (parte del dintel entre el estribo y el extremo del parque de fabricación) que contrarreste el momento desestabilizador provocado por la dovela en voladizo y el pico de avance. Por ello su longitud dependerá de la distancia existente entre el estribo y la primera pila. Es también sobre esta zona donde se dispondrán de los apoyos deslizantes provisionales de neopreno-telón. Para ir dando continuidad al dintel cuando finaliza el fraguado de una de las dovelas esta se une a las anteriores situadas a partir de la zona de deslizamiento mediante el pretensado. Para evitar las discontinuidades que se puedan producir de forma local en el contacto entre dovelas la zona de hormigonado no acabará estrictamente en su zona, sino que se adelantará del orden de 10 a 20 cm en la zona de deslizamiento. Las dovelas a emplear también pueden ser prefabricadas, solidarizándose entre sí en esta zona mediante el empleo del pretensado.

o

Zona de Estribo: En la presente zona es donde se alojan los gatos de empuje. Por ello pasaremos ahora a la descripción de los mismos y las diversas posibilidades de empuje posibles. 4.3.2

Medios de Empuje

De entre todas las posibilidades existentes destacaremos dos, al ser estas las más empleadas actualmente. La primera de ellas sería el empleo de gatos normales de pretensado anclados a los estribos o a las pilas intermedias rígidas, desde las que se tira del dintel por medio de vigas traseras y cables. Como ventaja cabe destacar que el empuje no depende de la reacción vertical que se produzca en las pilas, siendo más fácil el arranque y la finalización de las operaciones de empuje. También es más barato y tiene una gran capacidad de carga. El principal inconveniente que presenta es su irreversibilidad, es decir, que es imposible dar marcha atrás, lo que en muchos procedimientos de empuje es necesario.

17

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Esquema del Proceso de Avance Mediante Cordones. Fuente: [2]

En segundo de los procedimientos es el empleo de gatos verticales y horizontales que se sitúan en el propio estribo, por ello el empuje consta de los siguientes elementos: apoyo provisional, gato vertical y gato horizontal. En la parte superior del gato vertical entra en contacto con la parte inferior del dintel, en ella se coloca una chapa rugosa en el que se ha acentuado el coeficiente de rozamiento, y en la parte inferior una plaza deslizante de acero inoxidable y teflón. En primer lugar el dintel se encuentra en reposo sobre el apoyo provisional. Al actuar el gato vertical este se despega del apoyo, activándose entonces el gato horizontal que empuja al conjunto de gato vertical más dintel. Una vez se produce el descenso del gato vertical el dintel vuelve a estar apoyado en el apoyo provisional, por lo que el gato vertical puede ser recuperado. En cada uno de estos empujes de avanza en torno a los 15 - 20 cm.

18

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Esquema de Empuje Mediante Gatos. Fuente: [2]

No debe olvidarse que en casos en los que se presenten fuertes pendientes puede que sea precisa la colocación de sistemas de retenida que eviten el avance sin control del tablero a favor de la pendiente. 4.3.3

Apoyos

A continuación detallaremos las características de los apoyos que podemos encontrarnos a lo largo del proceso de construcción. o

Apoyos de Deslizamiento: Los apoyos empleados tradicionalmente consisten en un elemento metálico sobre el que se sitúa una capa también metálica recubierta de acero inoxidable, adaptadas entre sí mediante el empleo de unos tensores. Esta chapa de deslizamiento tiene unas zonas de entrada y salida con una cierta curvatura destinada a la colocación de las almohadillas de rozamiento. La base del apoyo es horizontal y la parte superior presentará la curvatura, que recordemos deberá ser constante o circular, caso para el cual la pendiente de cada uno de los apoyos será diferente. Los apoyos han de situarse con la máxima precisión (3 cm de desviación en planta 6 mm en relación a la tangente al eje en planta en ese punto y 2 mm entre sus extremos en relación con la pendiente del puente en ese punto).

19

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Detalle Apoyo Deslizante.Fuente: [6]

Estos apoyos pueden ser provisionales o definitivos. El apoyo provisional se emplea en las zonas donde no se ubicará finalmente la estructura, como podría ser el parque de fabricación. En las pilas tenemos dos opciones, o bien se colocan una serie de apoyos provisionales que serán sustituidos por los definitivos una vez que se haya terminado el proceso de empuje o emplear los apoyos definitivos. En la actualidad cada vez son más empleados los apoyos definitivos como apoyos de deslizamiento, construyendo la capa superior con la forma adecuada (curvatura en los bordes de entrada y de salida) y mediante la chapa de acero inoxidable con pulimento espejo que actúa como capa de deslizamiento. En los apoyos de neopreno-teflón es el puente el que se encuentra fijo sobre el apoyo, produciéndose el deslizamiento entre el dintel metálico y el apoyo fijo. En este tipo de apoyos al no existir una capa de acero inoxidable se produce un aumento del coeficiente de rozamiento que alcanza valores entre el 2 y el 3%. Este procedimiento tiene como principal ventaja que evita el movimiento de las almohadillas de neopreno-teflón de los apoyos tradicionales, movimiento que da lugar a equivocaciones. o

Apoyos Provisionales: Estos apoyos están formados por un bloque de hormigón con una gran armadura. Junto a los mismos se dispondrá de un camino de rodadura y una guía lateral. El camino de rodadura estará recubierto de una chapa de acero inoxidable, correctamente pulida y tensada. Encima de ella se dispondrán una serie de almohadillas de neopreno-teflón de aproximadamente 13 mm de espesor. De esta forma el neopreno entra en contacto con el puente y el teflón con el acero inoxidable. Al producirse el movimiento del puente se arrastra la almohadilla que cae hacia delante, siendo introducida de nuevo por detrás. Los intentos para encontrar una forma de realizar el intercambio automático de almohadillas no han conseguido los resultados esperados. Esto tendría un gran interés ya que el gran número de personas involucradas y las 2 o 3 horas de duración del proceso de empuje hagan que exista un riesgo a considerar de que se produzca un error humano. Los coeficientes de rozamiento van desde valores del 2 o 3 % en condiciones óptimas de empuje a valores alrededor del 5% para condiciones desfavorables, sobre todo a bajas temperaturas. De cara a reducirlo se colocarán almohadillas lo más pequeñas posible.

20

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Apoyos Transversales de Guiado y Bloqueo: La misión principal de estos apoyos es la de guiado del cajón durante el movimiento, fundamentalmente cuando el eje en planta es circular. Presenta unas características similares a los apoyos de delizamiento, aunque de menor tamaño al tener que soportar cargas menores y se coloca de forma pararela a la cara del alma del cajón en la zona inferior al mismo. Podemos encontrarlos en las siguientes posiciones:    

En el apoyo de frenado. Junto a los apoyos del parque de fabricación. En la pila más alejada del parque a la que haya llegado el dintel. En la pila sobre la que desliza el pico, durante el proceso de deslizamiento.

En la última de estas situaciones el efecto de guiado no tiene un carácter relevante debido principalmente a la flexibilidad del pico de avance en relación con el dintel. Sin embargo se utiliza para conseguir que el pico pase sobre el eje de apoyo de forma que se pueda colocar una almohadilla de deslizamiento centrada sobre el apoyo. Que la almohadilla se encuentre perfectamente centrada tiene un carácter importante ya que al ser el alma de la viga del pico menos rígida a torsión que el dintel se pueden producir giros de las vigas, escupiéndose la almohadilla, creándose con ello problemas de deslizamiento que obliguen a detener el proceso constructivo hasta que se haya colocado una nueva almohadilla. La corrección de las desviaciones que se produzcan durante el proceso se corregirá mediante la colocación de unas chapas metálicas, con espesores alrededor de 1 mm, sobre las almohadillas, de manera que se obligue al avance en la dirección correcta. Es un requisito importante de cara al buen desarrollo del proceso que no exista deslizamiento relativo entre dintel y apoyo en el momento en el que se aflojen las guías transversales, por lo que estas deberán tener un soporte muy rígido. En las pilas se colocarán una serie de apoyos transversales que bloqueen el puente a efectos de la acción del viento y que son colocados sobre los mismos soportes de los apoyos de guiado. Estos apoyos se liberarán del dintel cuando se esté produciendo el empuje, apretándose de nuevo al terminar este, bloqueando con ello los movimientos transversales.

21

Análisis y Dimensionamiento de Viaductos Empujados

4.3.4

Santiago Alonso Segovia

Nariz o Pico de Avance

En puentes de hormigón pretensado este elemento juega un doble papel, por un lado realiza un control sobre los momentos flectores al reducir el peso propio y por otro lado facilita el proceso de acceso del dintel a la pila. Se trata de una estructura metálica fabricada en dos o más partes ensambladas mediante tornillos para formar la unidad completa. Se dispondrán de dos vigas, una por cada una de las almas de la sección estructural. La unión con el dintel se realizará mediante pretensado, esta unión deberá transmitir correctamente los momentos flectores y los esfuerzos cortantes producidos por la reacción de la pila. En dicho punto tendremos dos tipos de flexión, por un lado la flexión negativa correspondiente al peso propio, y por otro lado, la flexión positiva, que presenta una mayor importancia, provocada por la reacción de la pila. Ambas son absorbidas mediante el pretensado. El cortante se transmitirá a través de los tacones dejados, al efecto, en el pico y el dintel. El arriostramiento deberá cubrir únicamente las necesidades derivadas del pandeo de las cabezas superior e inferior. En la parte más lejana del dintel no se presentan necesidades de planeidad en la parte inferior del pico de avance ya que este es bastante flexible al entrar en la pila. Esto no ocurre en las partes más cercanas a la dovela empujada. En cuanto a su longitud, al aumentar esta se produce una reducción de esfuerzos en el dintel al verse disminuido el peso propio, sin embargo, debido al alto precio del mismo deberá realizarse un análisis de cara a conseguir una solución de compromiso entre coste y capacidad resistente. Esta longitud suele ser alrededor del 60% de la longitud del mayor de los vanos. De cara al guiado del tablero la cabeza inferior deberá poseer un ala vertical que servirá como encarrilador del puente sobre los apoyos transversales. Se muestra conveniente la determinación de las flexiones locales producidas por las reacciones de dichos apoyos de cara a la realización, en caso necesario, de la correcta rigidización transversal. Estas cargas son rápidamente crecientes, desde la parte delantera, a la de la unión con el hormigón.

Vista Lateral Pico Avance. . Fuente: [2]

Vista Inferior Pico Avance. Fuente: Panoramio.com

22

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

4.4 Problemática Derivada del Proceso de Empuje Durante la construcción y el desarrollo del proceso constructivos se presentarán una serie de inconvenientes que deberán ser correctamente resueltos de cara a que se cumplan los requisitos para los cuales la estructura fue planteada. Dichos inconvenientes son exclusivos de los puentes empujados, siendo los siguientes: 4.4.1 Ley de Momentos Flectores: En el punto en el que la mayor parte del vano se encuentra en voladizo, es decir, justo antes de que el dintel alcance la pila se presentan unos valores formidables de la ley de momentos flectores. Esto es debido al peso propio, ya que es la mayor de las acciones de las consideradas durante el proceso de empuje. Se alcanzan valores de



, valores que no serían admisibles de cara a un correcto

planteamiento económico en puentes de hormigón.

Esquema Leyes de Momentos Flectores Antes y Después del Paso del Pico de Avance por la Pila. . Fuente: [7]

De cara a solucionar esta problemática poseemos dos procedimientos establecidos o

Disponer de una nariz o pico de avance en la parte delantera del dintel. Como ya comentamos en el apartado anterior del presente documento su objetivo es evitar la ménsula del dintel de hormigón, ya que su excesivo peso propio haría desproporcionadas las leyes de momentos flectores. En definitiva, cuando la nariz alcanza la pila la longitud de hormigón será tal que no habrá alcanzado una luz tal que produzca una ley de momentos de gran magnitud. Distinguiremos tres zonas claramente diferenciadas en el proceso de avance. En primer lugar la zona más cercana al voladizo de avance, en ella se produce una sobreelevación de los momentos flectores. Elevación que será menor cuanto mayor sea la longitud de la nariz. En cuanto a la longitud de la misma, esta rondará en 60 % de la luz principal. Si la longitud es menor, se abarata el coste de la nariz pero aumenta la longitud en voladizo de la sección de hormigón, aumentando con ello los momentos flectores. Si la longitud de la nariz es muy grande esta se encarece hasta el punto en el que el sobrecoste es superior a el ahorro por la reducción de momentos. En obras en las que el peso propio 23

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

juega un papel menor al lado de otras solicitaciones, como podrían ser acueductos o puentes de ferrocarril, la longitud se podrá reducir hasta el 50 % de la luz. Otro elemento a considerar en el planteamiento constructivo es la rigidez de la nariz. Tener una nariz excesivamente flexible provocará que esta ayude poco al control de esfuerzos. Por otro lado, si es excesivamente rígida se produce un encarecimiento innecesario de la unidad. Para la determinación de la rigidez se deberán hallar los momentos que se producen en las secciones al pasar por la última pila sobre la que se encuentra apoyada el dintel, es decir, la anterior al tramo en voladizo. La ménsula máxima posible se producirá cuando el dintel todavía no ha alcanzado la siguiente de las pilas y la longitud en voladizo es máxima, al ser en esta posición donde se produce el máximo momento negativo. Momentos que bajan bruscamente en cuando se realiza el apoyo en la siguiente pila, con lo que el dintel en ese tramo pasa de estar en voladizo a estar simplemente apoyado. Si la rigidez de la nariz es excesiva, al avanzar el dintel sobre las pilas el momento negativo producido por el hecho de que existe una longitud de dintel de hormigón mayor entre las pilas 1 y 2, es mayor que el momento positivo producido por la reacción de la pila. Por el contrario, si la flexibilidad es excesiva los momentos de mayor valor se producirán en secciones alejadas del frente de avance. Esto quiere decir que la reacción producida en la pila no compensará el momento flector negativo producido por el peso propio del hormigón estructural. En cuanto a la esbeltez de la pieza, esta tomará valores en torno a 1/20 de la luz. Esto se podrá reducir hasta valores de 1/15 – 1/12 en puentes de carretera. o

Disponer de un atirantamiento provisional de carga variable, durante el proceso de lanzamiento.

Esquema Avance con Atirantamiento. Fuente: [2]

24

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Otra posibilidad es el atirantamiento del vano delantero mediante el empleo de un mástil con una altura aproximadamente del 40 % de la luz y que se encuentra montado sobre unos gatos que permiten variar la carga absorbida por el mismo. Estos gatos se aflojan cuando el mástil pasa por el centro del vano y se ponen en carga conforme el voladizo va aumentando gasta el momento en el que se alcanza la pila, punto donde los gatos se encuentran trabajando a carga máxima. Realizando una comparación entre los dos procedimientos descritos: -El atirantamiento necesitará un pequeño pico en su parte delantera, este tendrá una longitud menor que el pico de avance descrito en el procedimiento anterior ya que su objeto no es la reducción del peso propio si no el acoplamiento del dintel a las pilas en el momento de paso por las mismas. -Se necesitará un control mucho mayor que en el caso con el pico de avance ya que será necesario un control de las cargas conforme el dintel avanza. Los esfuerzos se controlan mediante el control de deformaciones. -Un hecho de gran importancia es que el atirantamiento incrementa en gran medida las reacciones verticales que se producen en las pilas, lo que no ocurre en el procedimiento seguido mediante el empleo del pico de avance. Esto obliga a la colocación de apoyos provisionales de tamaño mayor, incrementándose también la fuerza horizontal actuante sobre las pilas, esto es decisivo ya que normalmente las cargas producidas durante en lanzamiento pueden gobernar el dimensionamiento de las mismas en dirección longitudinal. -Otro problema, ya comentado anteriormente al realizar la descripción del parque de fabricación es que debido al peso del mástil, la longitud del parque deberá ser mayor de cara a evitar que se produzca el vuelco de la dovela empujada.

Construcción Puente Bahía de Cádiz. Fuente: Panoramio.com

25

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

4.4.2 Control de Deformación en Pilas: El control de la deformación horizontal en la coronación de las pilas juega un papel fundamental durante el proceso de empuje. Este control no sería necesario si se consideraran altos coeficientes de rozamiento pila-dintel, aunque el resultado obtenido estaría claramente sobredimensionado, presentando por lo tanto un alto coste económico. Si por el contrario se emplean coeficientes de rozamiento más ajustados resultará imprescindible el control preciso de los desplazamientos en coronación, ya que serán estos valores los que nos proporciones información sobre los esfuerzos horizontales que estamos introduciendo realmente. De forma tradicional estos esfuerzos se han controlado mediante el valor de la fuerza de empuje introducida por los gatos hidráulicos, lo que tiene el inconveniente de ser un valor característico de todo el puente y no de cada una de las pilas. Este control tiene una gran importancia ya que si las almohadillas fueran introducidas erróneamente se produciría de forma instantánea un gran aumento del valor de la fuerza de empuje, lo que podría provocar daños importantes en las pilas. En puentes que presenten un gran número de pilas no es idóneo el control topográfico de cada una de ellas, debido al gran esfuerzo que dicha tarea representaría. El empleo de la auscultación nos permitiría medir con precisión los parámetros necesarios para un correcto control. La medición de los desplazamientos en coronación no resulta una tarea sencilla, por ello se buscan parámetros equivalentes cuya medición se pueda realizar con una mayor facilidad. Un parámetro empleado con frecuencia es el giro en coronación ya que se puede controlar con facilidad mediante el empleo de clinómetros.

Esquema Deformación Horizontal al Paso del Pico de Avance. Fuente: Elaboración Propia

26

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

4.4.3 Paso del Pico o Nariz de Avance Sobre las Pilas:

Es muy importante en el procedimiento constructivo descrito la llegada adecuada de el dintel a la pila. Al llegar el extremo del pico a cada una de las pilas será necesario levantarlo hasta que pueda pasar por encima de los apoyos de forma que se pueda apoyar en las almohadillas correspondientes, por ello la deformación vertical en ese momento deberá ser menor que la carrera del gato vertical utilizado para levantar el pico. Se deberá garantizar que el pico de avance no roce el hormigón ni los elementos auxiliares que rodean la pila, por ello se deberá acercar la distancia justa para que el gato pueda proceder a la elevación. Podemos encontrarnos dos casos, en el primero de ellos el pico pasará sobre la pila de forma que el gato pueda llegar al apoyo (Figura 2), en el segundo de los casos la deformación vertical será mayor de forma que el pico llegue a la pila con una cota más baja que ésta (Figura 1).

Figuras 1 y 2.Fuente: [6]

En el primero de los casos se apoyará el gato produciéndose la elevación del pico, posteriormente se introducen las almohadillas que se empujan hasta que estén en el plano de apoyo, bajándose entonces el gato y continuándose el empuje (ver figuras 3 y 4).

27

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Caso I (Figuras 3 y 4). Fuente: [6]

En el segundo caso se girarán las dos secciones rectangulares (calzos) que se encuentran en la punta del pico (figura 2). Este giro se deberá realizar a una cierta distancia de la pila (alrededor de 20 cm) para evitar que los extremos de los calzos no choquen contra esta. Se continuará con el avance hasta que el gato llegue al apoyo donde se coloca el teflón, una placa de reparto, un taco de madero y otra placa de reparto, accionando el gato hasta que se puedan colocar nuevamente los calzos (figura 5), el gato deberá elevar lo suficiente para que se pueda colocar la almohadilla. Se bajará el gato una vez que la almohadilla esté contenida por completo en la zona plana del apoyo, pudiéndose entonces ya apoyar el pico en la almohadilla y continuar el proceso de empuje.

Figura 5.Fuente: [6]

28

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

4.4.4 Control Topográfico:

El control topográfico es de vital importancia y presenta dos partes significativas, la de control del eje en planta y el control del movimiento en las pilas. El control en planta presenta una problemática significativa en puentes curvos, ya que la ejecución deberá hacerse siempre referenciando puntos fijos materializados en las dovelas. Esto permitirá tomar las medidas correctoras necesarias ya que si el proceso de empuje no se controla con gran cuidado se pueden producir desviaciones del orden de decenas de centímetros, por lo además de que los elementos de guiado estén debidamente colocados se deberá llevar un proceso de medida continuo. Por otro el control del desplazamiento horizontal en las pilas debido a los esfuerzos sobre las mismas, como ya se ha comentado en el apartado anterior, deberá ser correctamente controlado, con mayor énfasis cuanta mayor sea la altura de las pilas. 4.4.5 Sistema de Retenida:

Otro de los problemas planteados por el procedimiento constructivo empleado es la necesidad de instalar elementos de retenida cuando el empuje se realiza a favor de la pendiente y esta tiene un valor considerable. Si no se dispone de un rozamiento suficiente, o si no se confía en el valor del mismo se dispondrán una serie de placas moleteadas de forma que el coeficiente de rozamiento se vea incrementado.

29

Análisis y Dimensionamiento de Viaductos Empujados

5

Santiago Alonso Segovia

Puentes Construidos Mediante Voladizo Sucesivo

Método consistente en la construcción progresiva partiendo de un punto fijo que normalmente suele ser la pila y que a partir de ella, se va construyendo mediante voladizos a ambos lados de la pila. Válido para puentes con dovelas prefabricadas como hormigonados ``in situ´´. Este método es empleado en situaciones en la que es necesario salvar grandes luces, donde existen imposibilidades de colocación de pilas intermedias o en zonas de montaña donde la gran altura juegue un papel determinante. 5.1 Dovelas Prefabricadas

Una de las grandes diferencias entre las dovelas fabricadas ``in situ´´ y las prefabricadas es que estas segunda tipología permite una construcción a unas velocidades mucho más altas, colocando hasta dos dovelas por día mientras que en puentes fabricados ``in situ´´ este plazo aumenta hasta una media de una semana. La prefabricación se realiza en una planta cercana a la obra. Esto provoca un problema en la transmisión del cortante a través de la junta, para lo que usan las llamadas llaves de cortante. Una de las características principales de la construcción mediante dovelas prefabricadas es que estas solo se encuentran unidas mediante los cables de pretensado ya que no se deja conexión de la armadura pasiva. Por otro lado el método en el método de la dovela conjugada se emplean las propias dovelas como encofrado para la cara de la dovela que estará en contacto con ella. Esto se realiza de cara a asegurar la garantía de una buena continuidad de los esfuerzos y se basa es la igualdad geométrica de las caras de las dovelas. Esto permite también realizar la junta seca sin que sea necesario interponer ningún elemento entre ambas dovelas. Dentro de este método existen dos diferentes métodos de prefabricación, el método de la línea larga y el método de la línea corta. El primero de ellos consiste en la ejecución de una cama que tenga la geometría del fondo del tablero y sobre la que se hormigona dovela a dovela con un encofrado que se traslada a lo largo del mismo. Por su parte el método de la línea corta se fabrica la dovela en una célula de prefabricación compuesta por: o o o o o

Una dovela conjugada en la cara de contacto Una mesa regulable en la parte inferior del encofrado Un encofrado fijo en la cara opuesta a la de contacto Encofrado interior retráctil Encofrados laterales abatibles

30

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

-Pasos a seguir en el proceso de fabricación La geometría buscada se consigue mediante el correcto posicionamiento de los elementos anteriores. Los pasos a seguir de cara a la prefabricación de la dovela serían los siguientes: I. II. III.

IV. V. VI. VII. VIII.

IX.

X. XI.

Recepción de la ferralla y traslado hasta los moldes de montaje Ferrallado de la dovela Ubicación de los puestos de observaciones topográficas destinados a la toma y comprobación de las medidas necesarias para la garantía de que se consigue la geometría buscada Colocación del encofrado interior Colocación de el encofrado fijo formado por una chapa con un gran espesor Colocación de encofrados laterales y carros de fondo Dovela conjugada que servirá como enconfrado anterior a la siguiente dovela Hormigonado y vibrado, el hormigonado se realiza mediante bomba y el vibrado mediante una serie de vibradores externos acoplados al propio encofrado y un vibrador de aguja. Curado al vapor, dependerá de la temperatura ambiente siendo mayor el tiempo necesario cuanta más alta sea la temperatura de la zona en cuestión. Busca conseguir una resistencia mínima en el hormigón. Retirada de la dovela conjugada Acopio de las dovelas, con un mínimo de 30 días.

Con respecto a la colocación de las dovelas el procedimiento óptimo es su colocación mediante grúas, aunque por cuestiones de espacio esto no se consigue en la mayoría de los casos. En el resto se coloca una viga de lanzamiento que consiste en una subestructura metálica que deberá tener una longitud superior a la del vano construido, mediante este procedimiento se colocará la dovela de pila. Una vez que la dovela de pila se encuentre en su posición se procederá al montaje de las dovelas mediante voladizo sucesivo, realizando el montaje de dovelas alternando direcciones de avance (una dovela frontal y una dorsal).

31

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Dovela de Pila

5.2 Dovelas ``In situ´´

Al contrario que en la construcción usando dovelas prefabricadas el avance constructivo se realiza mediante el vertido de hormigón fresco en un encofrado donde se han colocado previamente las armaduras de la sección. El procedimiento evolutivo consiste en que la dovela construida se apoya en las dovelas anteriores mediante una serie de cimbras que garantizan la construcción del puente. Al igual que con dovelas prefabricadas el inicio de la construcción se realiza en la dovela de pila a partir de la cual se comienza a trasladar el encofrad Las operaciones a realizar serán las siguientes: I.

II.

Construcción de la dovela de pila. En primero lugar se ha de construir la losa inferior de la sección, en segundo lugar de ejecutan los alzados y las riostras transversales y finalmente se ejecuta la losa superior. Montaje de los carros de avance. El carro de avance se apoya en una serie de vigas longitudinales encargadas de transmitir las cargas aportadas por los encofrados y transmitirlas al tablero y por estructura transversal encargada de aportar resistencia, se trata normalmente de una estructura transversal en celosía. El carro tiene apoyos en su parte trasera que deben evitar que se produzca vuelco y en su parte delante, que tienen una serie de ruedas que permiten el desplazamiento de una dovela a la otra.

32

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Carro de Avance

III. IV. V. VI. VII. VIII. IX.

X.

XI. XII. XIII. XIV. XV.

Avance del carro. Para ello se usan equipos hidráulicos. Colocación del encofrado exterior Colocación del encofrado interior Colocación de la ferralla y tapes frontales de solera Colocación de tapes frontales de hastiales y de la losa de tablero Comprobación topográfica de coordenadas Hormigonado. Es un punto delicado dentro del proceso ya que es el momento en el que el carro se encuentra sometido a unos esfuerzos mayores. En primero lugar se ejecuta la losa inferior de la sección trasversal, seguida por los hastiales y la losa superior. Desencofrado, enfilado, tesado de cables de pretensado e inyección de las dovelas. La fuerza de tesado calculada en proyecto será aplicada mediante gatos hidráulicos, se tesarán primero los anclajes situados a una distancia menor del centro de gravedad con objeto de que el momento provocado por el tesado sea lo menor posible hasta que la operación haya finalizado, asimismo se intentará respetar la simetría respecto al eje perpendicular al tablero con objeto de evitar giros de la sección. Curado del Hormigón. Con ello se evitan problemas de fisuración debidos la retracción del hormigón Desmontaje de carros Avance de carros Dovelas de cierre y de estribo Enfilado y tesado de cables de continuidad. El tesado de cierre es el que realiza la unión de dos voladizos sucesivos, convirtiéndolos en una estructura que trabaja de forma solidaria comportándose como una única viga.

33

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Parte II: Metodología para el Análisis y Dimensionamiento de Viaductos Construidos Evolutivamente 1.

Introducción ........................................................................................................ 36

2.

Carácterísticas de los Materiales .......................................................................... 36 2.1 Hormigón ................................................................................................ 36 2.1 Acero Armaduras Activas ........................................................................ 37 2.3 Acero Armaduras Pasivas ........................................................................ 37

3.

Introducción de Cargas ........................................................................................ 38 3.1 Peso Propio ............................................................................................. 38 3.2 Cargas Muertas ....................................................................................... 39 3.3 Acciones Reológicas ................................................................................ 42 3.4 Carga de Viento ....................................................................................... 45 3.4 Rozamiento en Apoyos Deslizantes ......................................................... 45 3.4.1 Velocidad Básica del Viento ............................................................... 45 3.4.2 Velocidad Media del Viento ............................................................... 46 3.4.3 Empuje del Viento ............................................................................. 47 3.4.3.1 Empuje Transversal Sobre el Tablero ......................................... 49 3.4.3.2 Empuje Longitudinal Sobre el Tablero........................................ 51 3.4.3.3 Empuje Vertical Sobre el Tablero ............................................... 52 3.4.3.4 Empuje Transversal Sobre las Pilas ............................................ 54 3.4.3.5 Empuje Longitudinal Sobre las Pilas ........................................... 55 3.5 Sobrecarga de Tráfico.............................................................................. 56 3.6 Rozamiento en Apoyos Deslizantes ......................................................... 60

4.

Predimensionamiento.......................................................................................... 61 4.1 Nariz o Pico de Avance ............................................................................ 61 4.2 Sección Estructural Hormigón ................................................................. 63 4.2 Pilas......................................................................................................... 67 4.4 Pretensado Rectilíneo ............................................................................. 65 4.4.1 Pretensado Inferior ............................................................................ 73 4.4.2 Pretensado Superior .......................................................................... 74 4.5 Pretensado Parabólico ............................................................................ 75 34

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

4.6 Pérdidas en el Pretensado ....................................................................... 78 5.

ELU de Flexión Longitudinal. Dimensionamiento Armadura Longitudinal ............. 79 5.1 Momento de Agotamiento ....................................................................... 79 5.2 Armadura Longitudinal Final ..................................................................... 82

6.

ELU Esfuerzos Cortantes y Torsores. Dimensionamiento Armadura Transversal... 83 6.1 Esfuerzos Cortantes ................................................................................. 83 6.2 Esfuerzos Torsores ................................................................................... 86 6.3 Armadura Transversal Final ...................................................................... 88

7.

ELU de Agotamiento por Rasante. Armadura de Rasante ..................................... 90

7.

ELU de Flexión Transversal. Armadura de Flexión Transversal.............................. 92

9.

Diafragma de Pila ................................................................................................. 96

10. ELS de Flecha Máxima ........................................................................................ 100 11. ELS de Fisuración ............................................................................................... 101 12. Cáclulo y Dimensionamiento de Pilas ................................................................. 102 12.1 Pilas Centrales ...................................................................................... 103 12.1.1 Comprobación de Pandeo .............................................................. 106 12.1.2 Cálculo Armadura Longitudinal Pilar .............................................. 107 12.1.2 Cálculo Armadura Transversal Pilar ................................................ 107 12.2 Pilas Extremas ...................................................................................... 109 12.2.1 Comprobación de Pandeo .............................................................. 111 12.2.2 Cálculo Armadura Longitudinal Pilar .............................................. 112 12.2.2 Cálculo Armadura Transversal Pilar ................................................ 112 12.3 Disposición Final de Armadura .............................................................. 113

35

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

1. Introducción En esta parte del proyecto se definirán la metodología a seguir de cara al dimensionamiento de puentes empujados. Para ello se hará especial énfasis en los apartados que sean de especial interés en el proceso constructivo seguido. Aunque el objeto de este proyecto sea la puesta a punto de un proceso metodológico se tomarán una serie de datos, de forma que se pueda ir ejemplificando el procedimiento mediante un caso práctico. De esta forma se comenzarán describiendo los datos del proyecto, las características de los materiales empleados, las cargas actuantes y el predimensionamiento tanto de las secciones de pila y de dintel como del pretensado. Finalmente se realizarán las comprobaciones de Estado Límite Último y de Estado Límite de servicio marcadas por la normativa, así como el dimensionamiento de los distintos tipos de armadura que son necesarias para resistir satisfactoriamente las mencionadas cargas.

2. Características de los Materiales 2.1 Hormigón HP-60 o

Resistencia característica a compresión: = 60

o

Resistencia a tracción, debido a que no se poseen ensayos experimentales se obtendrá valor mediante el siguiente método aproximado = 0.3 ∗

o

= 4593

Módulo de elasticidad, debido a que la curva tensión deformación del hormigón de divide en dos tramos a su vez curvilíneos se podrán definir dos módulos de elasticidad, el módulo de elasticidad tangente (E0) para los puntos de la curva que se sitúan por debajo del 40% de la resistencia última y el módulo de elasticidad secante (E) para el resto. Este último ha sido el empleado en los cálculos y se obtiene mediante la siguiente formulación: = 8500 ∗

+ 8 = 34694

En el modelo empleado para el cálculo también se han considerado las propiedades del hormigón que varían con el tiempo, teniendo en cuenta de esta forma la variación de la resistencia que se produce en el mismo. o

Se tomará un coeficiente

= 1.5

36

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

2.2 Acero de armaduras Y 1860

La armadura activa destinada a pretensar la sección está formada por una serie de cordones de 140 mm de diámetro. Estos cordones deben estar hechos de un acero de alta resistencia con objeto por un lado de reducir las pérdidas y por otro lado obtener unas tensiones adecuadas que hagan que se produzca un sistema autoequilibrado con las fuerzas de pretensado.

o

Módulo de Elasticidad: E=210000 MPa

o

Carga Unitaria máxima: á

o

= 1860

Límite de elasticidad: = 1674

o

Se tomará un valor de 2% para la relajación del acero a las 1000 horas. Esto es de importante consideración debido a la disminución de las tensiones que se produce en el acero cuando se somete a una deformación constante.

2.3 Acero de armaduras B-500S

Este acero será empleado en la totalidad de las armaduras pasivas calculadas.

o

Módulo de Elasticidad: E=210000 MPa

o

Límite de elasticidad: = 500

o

Se tomará un valor de 2% para la relajación del acero a las 1000 horas. Esto es de importante consideración debido a la disminución de las tensiones que se produce en el acero cuando se somete a una deformación constante.

o

Se tomará un coeficiente

= 1.15

37

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

3. Introducción de Cargas

3.1 Peso Propio Se trata de una acción permanente de valor constante correspondiente al peso de los elementos estructurales, por ello, su valor dependerá de los pesos específicos de los materiales empleados. El peso de los elementos de hormigón deberá ser acorde con el tipo de árido empleado. Así se deberá considerar el peso de todos los elementos proyectados tales como riostras, costillas o los diafragmas de pilas. Esta carga será decisiva durante el proceso de empuje y se introducirá en el Software Midas Civil con la opción ``Self Weight´´, orden mediante la cual el programa introduce la carga dependiendo de la geometría y de las características de los materiales introducidos.

Introducción del Peso Propio en Midas Civil

3.2 Cargas Muertas

38

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Dentro de esta categoría, a diferencia de la anterior, se engloba los pesos de los elementos no estructurales que gravitan sobre los que si tienen una función estructural. Se considerará un espesor del pavimento bituminoso de 9 cm, englobando la preceptiva capa de impermeabilización. Se considerará un peso propio de mezcla bituminosa de 23 kN/m3,que se aplicará en el programa de cálculo como una carga lineal distribuida a lo largo del eje longitudinal del dintel, tomando un valor: = 23

∙ 11,20

∙ 0,09

= 23,18

Introducción Carga Peso Pavimento en Midas Civil. Nota: En la imagen anterior podría parecer que la carga posee una cierta excentricidad, lo que no es cierto.

39

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Diagrama Momento Flector My. Carga: Peso Propio Pavimento

Diagrama Cortante Vz. Carga: Peso Propio Pavimento

40

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Se considerará también una carga de barandilla de 1,5 kN/m. Esta carga se aplicará con una excentricidad

Introducción Carga Barandilla en Midas Civil

Diagrama Momento Flector My. Carga: Barandilla

Se introducirá asimismo una carga de diafragma en los apoyos de las pilas. Dicha carga modela el macizado de la sección en la sección de pila, realizada de cara a soportar correctamente el alto momento negativo existente en ese punto ya que hemos introducido la sección como hueca en toda su longitud.

41

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Esta carga tendrá un valor: =



= 25

∙ 14,14

= 353,50

Donde es el peso propio del hormigón y es el área interior macizada en las secciones de pilas. El macizado será de 5 m al final de cada uno de los vanos, es decir, en las pilas centrales existirán 10 m de macizado y 5 en las pilas extremas.

Introducción Cargas Diafragma en Midas Civil

3.3 Acciones Reológicas El hormigón experimenta una deformación a la lo largo del tiempo. La retracción es la deformación que se produce en el hormigón en el tiempo si que exista carga exterior. La fluencia a su vez es la deformación a lo largo del tiempo de un hormigón cargado. Ambos fenómenos son consecuencia de la respuesta que presentan los distintos componentes del hormigón a la presión interior y al equilibro hidráulico entre hormigón y medio ambiente La armadura pasiva y el pretensado se oponen a estas deformaciones, por lo que se establece entre el hormigón y el acero una transferencia de tensiones que ocasiona una pérdida de carga en las armaduras. Es normal en los procedimientos constructivos de puentes que los hormigones empleados tengan diferentes edades, su puesta en carga se haya realizado en distintas edades y las vinculaciones externas hayan cambiado a lo largo del proceso constructivo. Este efecto se ve disminuido en los puentes construidos con dovelas prefabricadas, al presentar el hormigón una edad mayor. Estas acciones consideran las deformaciones provocadas en el hormigón por la retracción y la fluencia, modelando también la variación de resistencia en el hormigón durante el proceso de curado. Es decir, introduce en el modelo de cálculo la variación en las propiedades del hormigón que se produce conforme transcurre el tiempo. Introduciremos también el efecto causado por la fluencia en el comportamiento del hormigón.

42

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Introducción Datos sobre fluencia en Midas Civil

Se supondrá que la edad del hormigón al comenzar a actuar la fluencia será de 2 días

Se considerará una humedad relativa del 70 %. El campo señalad en la imagen anterior como `Notional size of menber´ será recalculado por el programa una vez que se hayan introducido la sección estructural correspondiente, por lo que el valor actual es simplemente estimativo. Se ha considerado también el endurecimiento del cemento como normal o rápido.

Variación del Coeficiente de Fluencia con respecto al tiempo

43

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

En la tabla posterior podemos ver la variación de la resistencia del hormigón durante los primeros 28 días, hasta alcanzar una resistencia de 50.000 kN/m2 , así como los datos introducidos en el software de cálculo para la consideración de dicha variación.

Variación de la Resistencia del Hormigón en función del Tiempo

Estas acciones reológicas provocarán una serie de esfuerzos que según normativa deberán ser considerados en las comprobaciones tanto de Estado Límite Último como de Estado Límite de Servicio.

Ley Momentos Flectores de Acciones Reológicas a los 10.000 días

44

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

3.4 Carga de Viento

Esta carga se asimila a una carga estática equivalente, esto es así ya que no es necesaria la consideración de los efectos aeroelásticos. Para el cálculo del valor de dicha carga se deberá calcular la velocidad básica y media del puente, lo que dependerá de la situación y características del mismo. 3.4.1

Velocidad Básica del Viento:

La velocidad básica del viento ( ) es la velocidad media que tiene el mismo durante un tiempo de 10 min y con un periodo de retorno T de 50 años, medida con independencia de la dirección del viento y la época del año en una zona sin obstáculos y desprotegida frente al viento (suelo tipo II según IAP-11), a una altura de 10 m sobre el suelo.

( = 50 ñ

)=





,

Donde: o o o

es el factor direccional del viento. A falta de estudios que aporten una mayor precisión se tomará valor unidad es el factor estacional del viento. A falta de estudios que aporten una mayor precisión se tomará valor unidad es la velocidad básica del viento considerando un periodo de retorno de 50 años.

A falta de estudios que aporten una mayor precisión se han tomado valor unidad para los factores direccional y estacional del viento. Considerando un periodo de retorno de 100 años, al ser este distinto de 50 años será calculado mediante la siguiente formulación: ( = 100 ñ

)=

,



se obtiene de la siguiente expresión: 1− =

1−



− ∙

1−

− (0.98)

Que tomando K=0,2 y n=0,5 para un periodo de retorno de 100 años 

= 1,04

45

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Mapa de Isotacas para la Obtención de la Velocidad Básica del Viento. Fuente: [8]

Observando la figura anterior obtenemos un valor de la velocidad básica del viento de ⁄ al situarse el puente proyectado en la Zona A de la figura, por lo tanto: , = 26 ( = 100 ñ

)=

,



= 27 ∙ 1,04 = 28,08



3.4.2 Velocidad Media del Viento: Aparte de la velocidad básica del viento, la velocidad media dependerá de la rugosidad del terreno y de la topografía. v (z) = c (z) ∙ c ∙ v (T)

o o o o

v c v c

(z) es la velocidad media del viento expresada en ⁄ . es el factor de topografía. De forma habitual toma valor unidad. (T)es la velocidad básica del viento considerando un periodo de retorno T. (z) es el factor de rugosidad. c (z) =

∙ ln

c (z) = c (

≥ )

<

46

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Donde: o o o o

z es la altura de aplicación del empuje del viento respecto del terreno, o en su defecto del agua situada bajo el puente. es el factor del terreno,valor según tabla. es la longitud de la rugosidad, valor según tabla. ( ) es la altura mínima, valor según tabla.

Coeficientes en función del tipo de entorno. Fuente: [8]

Se considerará un Tipo de entorno II, correspondiente a zonas rurales con vegetación baja y obstáculos aislados con separaciones de al menos 20 veces la altura de los mismos. Así mismo > , por lo que: c (z) =

∙ ln

= 0,190 ∙ ln

2 = 0,70 0,05

Por lo que: v (z) = c (z) ∙ c ∙ v (T) = 0,70 ∙ 1 ∙ 28,08 = 19,66



3.4.3 Empuje del Viento: En primer lugar realizaremos una serie de consideraciones acerca del empuje producido por el viento. Este deberá ser calculado de forma separada para cada uno de los elementos del puente, esto se empleará de cara a la aplicación de dicha carga durante el proceso de construcción evolutiva, activando la componente de los elementos que se van añadiendo a la estructura conforme el puente va siendo empujado. Deberemos tener en cuenta las siguientes situaciones: o

El área sobre la que actúa el viento puede no presentar siempre el mismo valor sino que podrá variar si actúan otras acciones. De esta forma será necesaria la distinción entre el viento en construcción y el viento en servicio (nieve, sobrecarga de uso…). En nuestro caso en servicio el área

47

Análisis y Dimensionamiento de Viaductos Empujados

o

Santiago Alonso Segovia

En situaciones transitorias las áreas de exposición presentadas por algunos de los elementos pueden ser diferentes a las definitivas. Por ejemplo, durante la construcción del tablero el viento longitudinal incidirá en la sección en cajón, mientras que en servicio dicho viento en situación de servicio actuará como un rozamiento en la superficie del tablero.

Se introducirá en el software de cálculo la carga de viento como una carga estática definida en función del elemento de aplicación. De cara al cálculo se considerará el valor del empuje del viento para la altura más alta a la que esté aplicado. Este empuje en cualquiera de los elementos sobre los que actúe el viento se calculará con la siguiente expresión general, expresión que será necesario particularizar en función del tipo de empuje:

=

ρ ∙ v (T) ∙ 2

( )∙

,



Donde: o

o

,



es el empuje horizontal del viento (N) ( )

es la presión de la velocidad básica del viento kg

o

ρ(densidad del aire) = 1,25

o

v (velocidad básica del viento) = 28,08

o o

o

o

m ⁄

(coe iente de fuerza) es el área de referencia, obtenida como la proyección del área sólida expuesta sobre el plano perpendicular a la dirección del viento. es el factor de turbulencia, que se tomará igual a 1,0. ( ó ) calculado con la siguiente formulación. Este valor depende de la altura de la pila, se realizarán los cálculos considerando la altura de las pilas centrales, al ser estas mayores que las más cercanas a los estribos. (

ó )=

,

= 0,19 ∙ 1 ∙





35 +7∙1∙ 0,05

+7∙ 35 0,05



= 3,20

El coeficiente de fuerza dependerá de si el viento incide sobre las pilas o sobre el tablero.

48

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

3.4.3.1 Empuje Transversal sobre el Tablero La componente de este viento está incluida en el plano x-y. En servicio de cara a la consideración de la sobrecarga de uso debida al tráfico se le añadirán 2 metros de altura debido a la superficie de exposición añadida por los vehículos. A falta de datos experimentales se determinará el coeficiente de fuerza mediante la siguiente expresión: = 2,50 − 0,30 ∙

,



= 2,50 − 0,30 ∙

11,20 = 1,48 3,30

Donde: o o

es la anchura total del tablero. ℎ es la altura equivalente, donde se debe considerar además de la altura del tablero la altura de cualquier elemento estructural completamente opaco contra el viento.

Por lo tanto ya estamos en disposición de obtener la fuerza ejercida por el viento horizontal sobre el tablero del puente, no se ha multiplicado por el área de referencia de cara a obtener dicha fuerza por unidad de superficie.

,

=

ρ ∙ v2b (T)

2

( )∙



, ,

=

1,25 ∙ 28,082

2

∙ 1,48 ∙ 3,20 = 2,34

Según normativa en tableros de alma llena esta carga se aplicará a un 60 % de la altura medida desde la base del tablero, esto permite considerar el momento de vuelco que produce el viento sobre el tablero. Por ello la distancia será introducida en el programa de cálculo como una carga lineal a una altura de 1,98 m de la base de la sección.

,

= 2,34

∙ 3,30

= 7,72

Introducción Carga Viento Transversal en Tablero en Midas Civil

49

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

d

Ley Momentos Mz Empuje Transversal Viento

s

Cortante Vy Viento Transversal

50

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

3.4.3.2 Empuje Longitudinal sobre el Tablero Se considerará un empuje horizontal paralelo a la dirección del eje del puente. Este se tomará, según indicaciones normativas, como un 25 % del empuje transversal sobre el tablero. Al ser el tablero tipo cajón con almas que no presentan huecos no será necesario considerar el coeficiente reductor especificado en normativa. Así mismo tampoco se considerará la reducción debida a la inclinación de las almas en los tableros de alma llena, debido a prescripciones normativas. Por lo tanto:

,

= 7,72

∙ 0,25 = 1,93

Introducción Carga Viento Longitudinal en Tablero en Midas Civil

Axil Viento Longitudinal

51

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

3.4.3.3 Empuje Vertical sobre el tablero El empuje del viento vertical ejercido sobre el tablero del puente será calculado mediante la expresión general. ,

=

ρ ∙ v (T) ∙ 2

( )∙

,



,

Por prescripciones normativas el coeficiente de fuerza se tomará con un valor igual a 0,9. El resto de elementos que intervienen en la ecuación anterior tienen el mismo significado que los empleados para el cálculo del empuje transversal horizontal. En cuanto al coeficiente de exposición se tomará el calculado anteriormente para pilas de 35 m.

=

,

1,25 ∙ 28,082

2

∙ 0,90 ∙ 3,20 = 1,42

De cara a la consideración del momento de vuelco del tablero esta carga se aplicará con una excentricidad equivalente de un cuarto de la anchura del tablero hacia el borde de barlovento. Por lo que deberemos incluir dicha fuerza por unidad de longitud, para ello, multiplicaremos el valor anterior por la anchura del tablero.

,

= 1,42

∙ 11,20

= 15,90

Como ya hemos comentado esta fuerza será aplicada a una distancia 2,80 m del eje longitudinal del dintel. z

Introducción Carga Viento Vertical en Tablero en Midas Civil

52

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Momento Flector My Viento Vertical

Momento Torsor Mx Viento Vertical

Cortante Vz Viento Vertical

53

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

3.4.3.4 Empuje Transversal sobre las Pilas En este caso no existe diferencia entre el valor que presenta dicha carga en las fases de construcción y en las de servicio. La anchura de cada pila será de 1,70 m. El área de referencia se tomará como la proyección del área sólida expuesta sobre el plano perpendicular a la dirección del viento. El coeficiente de fuerza necesario será obtenido de la siguiente tabla extraída de la IAP-11

Tabla para obtención de Coeficiente de fuerza. Fuente: [8]

Considerando una pila de sección circular con superficie rugosa tomaremos un coeficiente de fuerza:



=

4,10 = 2,41 1,70

, ,

=1

Los coeficientes de exposición calculados para alturas de pila de 35 y 20 m: ,

= 0,19 ∙ 1 ∙

35 +7∙1∙ 0,05

35 0,05

= 3,20

,

= 0,19 ∙ 1 ∙

20 +7∙1∙ 0,05

20 0,05

= 2,81

54

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Por lo que ya estamos en disposición de obtener la fuerza de empuje del viento transversal sobre las pilas: ,

(35 ) =

,

(20 ) =

1,25 ∙ 28,082

2

1,25 ∙ 28,082

2

∙ 1 ∙ 3,20 = 1,58

∙ 1 ∙ 2,81 = 1,39

3.4.3.5 Empuje Longitudinal sobre las Pilas Los cálculos a realizar serán los mismos que los calculados en el apartado anterior pero utilizando las dimensiones correspondientes a la superficie de exposición de la pila ante la actuación del viento longitudinal.



=

1,70 = 0,42 4,10

, ,

,

(35 ) =

,

(20 ) =

1,25 ∙ 28,082

2

1,25 ∙ 28,082

2

= 2,35

∙ 2,35 ∙ 3,20 = 3,71

∙ 2,35 ∙ 2,81 = 3,27

55

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

3.5 Sobrecarga Tráfico



División en Carriles Virtuales

Se define como plataforma del tablero la superficie de un puente apta para el tráfico rodado situada a nivel de calzada y comprendida entre los bordillos de las aceras laterales. A efectos de aplicación de la carga se dividirá el ancho del puente en carriles virtuales de anchura w cada uno. La plataforma se dividirá en su totalidad al no existir una mediana que haga necesaria una división en carriles virtuales de cada una de las partes por separado.

Defiinición de los Carriles Virtuales. Fuente: [8]

Quedando para el caso proyectado tres carriles virtuales de anchura 3 m cada uno de ellos y un área remanente de 2,2 m. A continuación podremos observar como quedarán dichos carriles virtuales una vez introducidos en el programa.

Primer Carril Virtual en Midas Civil

Segundo Carril Virtual en Midas Civil

56

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Tercer Carril Virtual en Midas Civil



Cargas Verticales

Se considerarán las acciones de los siguientes vehículos pesados, siendo carga correspondiente a cada uno de los carriles virtuales la mostrada en la siguiente tabla:

Valores Característicos de Sobrecarga de Uso. Fuente: [8]

En cada uno de los carriles virtuales será considerada la actuación de un único vehículo pesado con carga 2Q. Esta carga se repartirá de igual forma en las ruedas de cada eje, siendo el valor de la carga en cada una de ellas de 0,5Q. La separación entre ruedas pertenecientes al mismo eje es de 1,2m. De cara a las comprobaciones generales se supondrá al vehículo centrado en el carril central, en cambio para las comprobaciones locales el vehículo se situará en la posición más desfavorable dentro de cada carril. Se considerará asimismo una sobrecarga uniforme, cuyo valor se extraerá de la tabla del apartado anterior. Esta carga también se considerará en el área remanente extendiéndose trasversal y longitudinalmente a todas las zonas donde realice un efecto desfavorable en el elemento bajo estudio. El programa Midas Civil viene incorporado con una serie de vehículos standard, entre ellos el empleado por la normativa española. Al introducir los vehículos de esta forma los coeficientes de combinación estipulados en la normativa ya vendrán definidos.

57

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Definición Vehículo Standard en Midas Civil

En software Midas civil nos permite introducir el tráfico rodado en la estructura, definiendo los carriles virtuales tal y como hemos detallado. Al tratarse de cargas que no se encuentran presentes durante la construcción, sino que son cargas que aparecen una vez que la estructura entra en servicio, será necesaria su definición en la etapa Base ya que no pertenecen a ninguna de las etapas constructivas. Definiremos dos tipos de combinaciones de carga. La combinación característica y la combinación frecuente, combinaciones que se emplearán respectivamente en los Estados Límite de Servicio en combinación característica y frecuente.

58

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Momento Flector My Positivo Sobrecarga Tráfico

Momento Flector My Negativo Sobrecarga Tráfico

59

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

3.4 Rozamiento en Apoyos Deslizantes Durante el proceso de empuje el dintel desliza sobre una serie de apoyos provisionales, al existir un rozamiento entre ambas partes estructurales será necesaria la consideración de la fuerza horizontal transmitida al apoyo por parte del dintel, acción de gran importancia de cara al dimensionamiento de las pilas. Según normativa, a falta de estudios que aporten mayor precisión se considerarán los coeficientes de rozamiento de la siguiente manera: 

Coeficiente de Rozamiento Adverso: = 0,5 ∙



á

∙ (1+∝)

Coeficiente de Rozamiento Favorable: = 0,5 ∙

á

∙ (1−∝)

Donde á es el coeficiente de rozamiento máximo del aparato de apoyo. Para apoyos deslizantes con PTFE consideraremos que tomará un valor del 3%, independientemente de la presión vertical a la que esté sometida el apoyo. ∝ por su lado depende del número parcial de apoyos (n), que dependiendo del número que sean ejercerán un efecto favorable o desfavorable.

Tabla Factor ∝. Fuente: [8]

60

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

4. Predimensionamiento 4.1 Nariz o Pico de Avance La sección transversal de la nariz estará formada por dos secciones metálicas en forma de doble T de sección variable, siendo máxima su sección en la unión con el dintel de hormigón y mínima en la parte más alejada del mismo. Estos perfiles metálicos estarán unidos por una serie de correas transversales que garantizan la compatibilidad entre ambos. Tendrá una longitud de 35 m con un peso propio aproximado de 2,7 T/m (valor recomendado por los autores A. Aparicio y J.R. Casas en su libro ``Puentes´´). De cara a la realización del modelo de cálculo se modelarán ambas secciones con una sección equivalente, tal y como puede observarse en la siguiente tabla.

Sección Dintel Sección Voladizo

Sección Real 3300x500x30x40 1650x350x25x30

Sección Equivalente 3300x1000x60x40 1650x700x50x30

Introducción Datos Sección Nariz en Midas Civil

61

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

La condición empleada de cara al predimensionamiento de la nariz es la limitación del desplazamiento a un valor máximo de 30 cm, ya que esta es la distancia máxima que permite recuperar el gato hidráulico situado en la pila y encargado de que el dintel pase por encima de ella, compensando la flecha producida durante el proceso de empuje. En la figura siguiente podemos observar los desplazamientos en la punta de la nariz durante todas las fases del empuje:

Desplazamiento Nariz Durante Proceso de Empuje

Como podemos observar el desplazamiento máximo se da antes de alcanzar la última de las pilas, siendo este valor de 13 cm.

Detalle del Modelo de Cálculo en el Momento de Desplazamiento Máximo Durante el Empuje

62

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

4.2 Sección Estructural Hormigón De cara al predimensionamiento de la sección estructural se ha tomado como referencia la siguiente tabla extraída del libro ``Puentes´´ de A. Aparicio y J.R. Casas, donde se parte de las características conocidas en un principio, esto es, ancho de la losa superior y longitud de los vanos, para predimensionar el resto de la geometría de la sección.

Magnitudes Recomendadas para el Predimensionado en Puentes de Carretera

Quedando finalmente la sección como se muestra en la figura siguiente. Cabe resaltar que dichos valores son únicamente valores previos a las comprobaciones marcadas de Estado Límite Último y Estado Límite de Servicio marcadas por la normativa, comprobaciones después de las cuales podrán variar algunas de las dimensiones de la sección.

63

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Por lo tanto:

Predimensionamiento Sección. Fuente: Elaboración Propia

Introduciendo dichos valores en el programa de cálculo:

Introducción Datos Sección en Midas Civil

64

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

4.3 Pilas Las dimensiones de las pilas dependen principalmente de dos factores, estos son las acciones actuantes sobre ellas y la altura de las mismas. Se proyectará una pila alta de sección rectangular hueca. Estas son las pilas más comunes de entre las pilas altas y se caracterizan por tener una gran rigidez tanto a flexión en ambas direcciones como a torsión, lo que le otorga una buena capacidad resistente de cara a afrontar las acciones transmitidas por el dintel, las producidas por el viento… La altura de las pilas será de 20 m para las pilas extremas y de 35 m en las pilas centrales, tal y como se puede observar en la siguiente figura:

Esquema Longitudinal de Dintel y Pilas. Fuente: Elaboración Propia

La sección transversal de la pila puede ser constante o variable, siendo lo más frecuente una variación del canto en la dirección transversal al puente ya que las solicitaciones de viento y la excentricidad de la sobrecarga son mayores en esa dirección. En cuanto a esta variación del canto puede seguir una variación lineal, con pendiente 0,1 o parabólica, que presenta excelentes propiedades resistentes. La pila proyectada será de sección constante y se predimensionará siguiendo las recomendaciones del libro ``Puentes´´ de Javier Manterola. En primer lugar realizaremos el predimendionado de las pilas centrales. Se aproximará el canto mediante la siguiente expresión: = 2 + 0,06 ∙

= 4,10

A diferencia de la dirección transversal, en dirección longitudinal las pilas deberán tener ancho constante. Esto se hace principalmente por dos motivos, el primero es que desde el punto de vista constructivo es muy fácil el empleo de un encofrado que presente variación en una de sus dimensiones, pero se complica en gran medida si son dos las que varían. Por otro lado, desde un punto de vista resistente la pila se encuentra muy protegida ya que las acciones exteriores son mucho menores en esta dirección, además la pila se apoya en el dintel, apoyo que presenta una eficacia mucho mayor cuanta mayor sea la esbeltez de la pila. Finalmente, la anchura será calculada mediante la siguiente expresión: = 1 + 0,02 ∙

= 1,70

La instrucción del Ministerio de Fomento: Obras de Paso de Nueva Construcción establece que los espesores mínimos estarán en torno a los 0,25-0,30 m y los espesores máximos alrededor de 0,45-0,50 m, por ello y considerando el resto de las dimensiones de la pila se tomará un valor de 0,50 m.

65

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Sección Transversal de Pilas Centrales. Fuente: Elaboración Propia

Las pilas situadas en los extremos tendrán las mismas dimensiones a excepción del espesor que se ha reducido a un valor de 30 cm.

Sección Transversal de Pilas Extremas. Fuente: Elaboración Propia

66

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

4.4 Pretensado Rectilíneo Como ya se ha explicado con anterioridad en el presente trabajo, debido a la necesidad resistente de la carga del peso propio estructural se colocará un pretensado rectilíneo. Este pretensado se calculará con los máximos momentos positivos y negativos ya que cada una de las secciones atravesará dichos puntos de momentos máximos durante el proceso de empuje. Por ello pasaremos a describir las leyes de momentos flectores durante el empuje, con especial énfasis en el momento en el que la nariz alcanza la pila, momento en el que la longitud en voladizo es máxima.

Ley Momentos Flectores Antes y Después de Alcanzar la Primera Pila

Momento máx Positivo (mkN)

Momento máx Negativo (mkN)

Antes Alcanzar 1ª Pila

4747,41

48162,50

Después Alcanzar 1ª Pila

4965,74

34500,80

67

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

En la figura anterior podemos observar los apoyos mediante los que se modela el parque de fabricación (tres apoyos situados a la derecha de la imagen). El modelado del proceso de empuje consiste principalmente en el traslado de los apoyos de forma que el dintel se vaya trasladando hacia su posición definitiva, por ello, una parte vital en el programa de cálculo es la correcta variación de las condiciones de contorno entre fases de empuje sucesivas. También podemos observar en las imágenes posteriores la gran importancia que presenta la nariz o pico de avance en la reducción de la ley de momentos flectores, que se vería en gran medida aumentada debido al gran peso propio de la sección de hormigón.

Ley Momentos Flectores Antes y Después de Alcanzar la Segunda Pila

Momento máx Positivo (mkN)

Momento máx Negativo (mkN)

Antes Alcanzar 2 ª Pila

30848,10

48162,60

Después Alcanzar 2 ª Pila

32808,90

39329,30

Como podemos observar en las figuras, al realizarse el apoyo en la pila la ley de momentos flectores se desplaza hacia abajo, esto produce, hablando en valor absoluto, un aumento de los momentos positivos y una disminución de los momentos negativos.

68

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Ley Momentos Flectores Antes y Después de Alcanzar la Tercera Pila

Momento máx Positivo (mkN)

Momento máx Negativo (mkN)

Antes Alcanzar 3 ª Pila

30404,60

48162,60

Después Alcanzar 3 ª Pila

29874,70

50712,40

Ley Momentos Flectores Antes y Después de Alcanzar la Cuarta Pila

69

Análisis y Dimensionamiento de Viaductos Empujados

Momento máx Positivo (mkN)

Santiago Alonso Segovia

Momento máx Negativo (mkN)

Antes Alcanzar 4ª Pila

30327,40

49480,10

Después Alcanzar 4 ª Pila

30457,30

48846,50

Ley Momentos Flectores Antes y Después de Alcanzar la Quinta Pila

Momento máx Positivo (mkN)

Momento máx Negativo (mkN)

Antes Alcanzar 5ª Pila

30437,20

48901,80

Después Alcanzar 5ª Pila

30404,10

49063,40

70

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Ley Momentos Flectores del Peso Propio en Situación Definitiva

Momento máx Positivo (mkN) 37439,10

Momento máx Negativo (mkN) 47970,80

Por lo que a lo largo de todo el proceso de empuje tendremos los siguientes momentos máximos ocasionados por el peso propio estructural, usados para el cálculo del pretensado rectilíneo.

Momento máx Positivo

Momento máx Negativo

37439,10 m∙kN

50712,40 m∙kN

5. á = 1860 6. Porcentaje de Tesado: = 75 % 7. Coeficiente de Pérdidas: = 70 % 8. = 0,90 según normativa, debido al efecto favorable del pretensado 9. 10. 11. 12. 13.

Área unitaria de cada cordón 140 Área de la sección: = 7,31 Inercia a flexión de la Sección Bruta: = 56,65 Distancia de la fibra superior al baricentro: = 1,26 Distancia de la fibra inferior al baricentro: = 2,04

Las distancias de las fibras superior e inferior al baricentro tendrán signo positivo o negativo dependiendo si nos encontramos calculando el pretensado superior o inferior, estando aquí expresadas en valor absoluto.

71

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Esquema Sección y Fuerzas de Pretensado en Punto de Momento máx Negativo. Fuente: Elaboración Propia

Esquema Sección y Fuerzas de Pretensado en Punto de Momento máx Positivo. Fuente: Elaboración Propia

72

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

4.4.1 Pretensado Inferior

El módulo Resistente de la fibra traccionada: =

= 27,77

El módulo Resistente de la fibra comprimida: =

Los coeficientes

y

= −44,96

: =

= 3,79

=

= −6,15

Empleando ahora las inecuaciones de Magnel: ∙ 2

1.

( )≤−

+

2.

( )≥−

+

3.

( )≤−

+

∙ 1

4.

( )≥−

+

∙ 1

∙ 2





Resolviendo las anteriores inecuaciones llegamos a la siguiente fuerza de tesado inicial: = 5377,98 Siendo el número de cordones =

= 28



á

Sin embargo con este número de cordones la excentricidad sería excesiva, siendo imposible colocarlos en dicha posición ya que se saldría fuera de la sección estructural. Por ello colocaremos 32 cordones de 0,6 ´´, colocados a una distancia de 1,97 m del centro de gravedad de la sección. En un instante inicial tendremos una fuerza de tesado:

=







á

= 6248,60 73

Análisis y Dimensionamiento de Viaductos Empujados

4.4.2

Santiago Alonso Segovia

Pretensado Superior

Ahora calculando el pretensado superior destinado a la resistencia de los momentos negativos que se produzcan durante el empuje, obtenemos los siguientes resultados: = 7284,75 =

= 38



á

También por motivos de excentricidad deberán colocarse 56 cordones a una distancia de 1,16 m del centro de gravedad de la sección. =







á

= 10936,80

Para ello se colocarán vainas de 4 cordones de 0,60 ´´, 14 vainas en la parte superior y 8 en la inferior al y como se puede observar en la figura:

Esquema Sección Pretensado Peso Propio. Fuente: Elaboración Propia

74

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

4.5 Pretensado Parabólico Este postensado tiene como principal objetivo la reducción de la ley de momentos flectores una vez que la estructura ya ha entrado en carga, haciendo que la misma cumpla los requisitos funcionales y resistentes que requiere la normativa. Realizaremos el dimensionamiento partiendo del requisito de que no se produzcan tracciones en el hormigón para la combinación frecuente de Estado Límite de Servicio. De entre las dos combinaciones de ELS para combinación frecuente nos quedaremos con la primera de ellas (la que incluye el tráfico), al ser la más desfavorable, tal y como podemos observar en las siguientes envolventes de momentos flectores.En la combinación de ELS 1 el momento producido por la sobrecarga del tráfico es el máximo en valor absoluto en cada uno de los puntos, es decir, se considerará el momento positivo allí donde este sea superior al momento negativo y viceversa. 83

Combinación E.L.S. Combinación Frecuente 1

Momento máx Positivo

Momento máx Negativo

75649,50 kN/m

83736,60kN/m

75

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

Combinación E.L.S. Combinación Frecuente 2

Momento máx Positivo

Momento máx Negativo

63136,20 kN/m

75085,20kN/m

Por lo tanto el predimensionamiento se realizará con la combinación de acciones ELU1 y empleando los diagramas de Magnel, de forma análoga al proceso seguido en el dimensionamiento del pretensado rectilíneo.

Esquema Puntos Momentos Máximos. Fuente: Elaboración Propia

Se ha optado por la utilización de seis vainas de 12 cordones de 0,60’’, tres en cada una de las almas. Estas tienen un trazado parabólico en el que en función del momento en cada punto del dintel se ha calculado la excentricidad de los cables de forma que se cumplan las condiciones en cuanto a tensiones en el hormigón. En los vanos extremos (1, 6, 5 y 9) se han añadido unos refuerzos, dos vainas de 12 cordones en el vano 1-6 y dos vainas de 22 cordones en el vano 5-9. Esto tiene como objeto compensar

76

Análisis y Dimensionamiento de Viaductos Empujados

Santiago Alonso Segovia

los mayores esfuerzos que nos encontramos en dichas zonas, sin que sea necesario aumentar el pretensado del viaducto completo. A continuación veremos los resultados del predimensionado en cada uno de los puntos señalados en la imagen anterior, estos puntos se corresponden con los puntos de momentos máximos tanto positivos como negativos, por ello es en esos puntos donde el trazado de los tendones deberá tener una excentricidad mayor. Momento Positivo Punto

NºCordones

1 2 3 4 5

96 72 72 72 116

Excentricidad (m) 1,215

Get in touch

Social

© Copyright 2013 - 2024 MYDOKUMENT.COM - All rights reserved.