Story Transcript
Conceptos y Técnicas de Biotecnología I 2011 – 2do cuatrimestre FBMC-FCEN-UBA
Transferencia de Genes a Células Animales en Cultivo Unidad de Transferencia Genética Instituto de Oncología “Ángel H. Roffo” Universidad de Buenos Aires
ORGANISMOS TRANSGÉNICOS - INVOLUCRADOS EN BIOTECNOLOGÍA •BACTERIAS (i.e.: Escherichia coli) •HONGOS (i.e.: Saccharomyces cereviseae) •CULTIVOS CELULARES (animales o vegetales) •PLANTAS ALGAS VASCULARES •ANIMALES: PECES AVES MAMÍFEROS Bovinos Caprinos Ovinos Porcinos HUMANOS: Transgénesis parcial Terapia Génica
Transferencia de Genes a Células Animales en Cultivo PROPÓSITOS •Confirmar identidad de genes •Caracterizar oncogenes •Expresar proteínas que necesitan modificaciones posttraduccionales •Producir grandes cantidades de proteínas que naturalmente se encuentran en cantidades limitadas •Estudiar síntesis y transporte intracelular •Expresar secuencias genómicas que contienen intrones •Estudiar mecanismos de edición de genes •Analizar señales de control de transcripción y su modulación por drogas, hormonas, estado de diferenciación
Heterologous Protein Production In Eukaryotic Cells • Prokaryotic systems are generally cheaper, but… • Eukaryotic proteins produced in bacteria may be Unstable or lack biological activity due to lack of posttranslational modifications or correct assembly Possess unacceptable contaminants after purification
Posttranslational Modifications • • • • •
Conformation Cleavage Correct disulfide bond formation Protein disulfide isomerase Amino acid removal from initial polypeptide • O-linked or N-linked glycosylation About 30% of eukaryotic proteins are glycosylated
Examples of O-Glycosylations
Examples of N-Glycosylations
Examples of N-Glycosylations • Initial groups can be trimmed and then expanded to create different final modifications
Examples of N-Glycosylations • Another Variation
Cultivate mammalian cells!!!! Carrel (surgeon, 1923) Aseptic techniques Carrel Flask
50-s Chemically defined media (Eagle, Earle) Consistency Sterilization Reduced chance of contamination
Growth of Animal Cells in Culture • In vitro cell culture systems enable scientists to: – study cell growth and differentiation – perform genetic manipulations to understand gene structure and function. • Culture media contains: – Serum – Salts – Glucose – Various amino acids and vitamins that the cells do not make for themselves.
Ejemplo de medio de cultivo de células de mamífero: Dulbecco Modified Eagle medium (DMEM) Vitamins
Inorganic Salts Calcium Chloride
0.2
0.2
Choline Chloride
0.004
0.004
Ferric Nitrate • 9H2O
0.0001
0.0001
Folic Acid
0.004
0.004
Magnesium Sulfate (anhydrous)
0.09767
0.09767
myo-Inositol
0.0072
0.0072
Potassium Chloride
0.4
0.4
Niacinamide
0.004
0.004
Sodium Bicarbonate
3.7
3.7
0.004
0.004
Sodium Chloride
6.4
6.4
D-Pantothenic Acid (hemicalcium)
Sodium Phosphate Monobasic (anhydrous)
0.109
0.109
Pyridoxal • HCl
—
—
Pyridoxine • HCl
0.004
0.004
Riboflavin
0.0004
0.0004
Thiamine • HCl
0.004
0.004
D-Glucose
4.5
4.5
Phenol Red • Na
0.0159
—
Pyruvic Acid • Na
0.11
—
0.584
0.584
Amino Acids L-Arginine • HCl
0.084
0.084
L-Cystine • 2HCl
—
0.0626
Glycine
0.03
0.03
L-Histidine • HCl • H2O
0.042
0.042
L-Isoleucine
0.105
0.105
L-Leucine
0.105
0.105
L-Lysine • HCl
1.46
0.146
L-Methionine
—
0.03
L-Phenylalanine
0.066
0.066
L-Serine
0.042
0.042
L-Threonine
0.095
0.095
L-Tryptophan
0.016
0.016
L-Tyrosine • 2Na •2H2O
0.10379
0.6351
L-Valine
0.094
0.094
Other
Add L-Glutamine
+ compuestos no-definidos: suero sanguíneo (5-15%), cocktail de factores de crecimiento, etc.
Serum • 0-20% Serum – – – – – –
Growth factors Transferrin (Fe) Lipids Insulin Shear protection Detoxification
Problems – Infectious agents (viruses, mycoplasm, prions)
– serum composition is poorly defined and the batches vary.
– Expensive Completely
mammalian origin free (MOF) chemically defined medias
Growth of Animal Cells in Culture • Primary cultures are the original cultures established from a tissue. • Permanent (or immortal) cell lines are embryonic stem cells or tumor cells that proliferate indefinitely in culture.
Growth curves in yeasts and mammalian cells are different
10.0
Stationary
Cx (g/l)
1.0
decline
0.1
exponential
0.0
Yeast Hybridoma
0.0
Minimum 0.0 density
Lag phase
0.0 0
50
Time (h)
100
Ejemplo: historia del desarrollo de la línea HEK-293
Graham, et al., J. Gen. Virol., 36:59-72, 1977
Dificultades suplementarias • El tiempo de división aumenta con la talla: – Las células animales necesitan condiciones de asepsia muy estrictas • Adhesión obligatoria: – Ciertas líneas de células de mamíferos necesitan un soporte para ser viables. Esto: – presenta un problema de escalado – las vuelve particularmente susceptibles a la disrupción
Ej: tapiz celular de mioblastos
Cultivo sobre microcarrioers
MODALIDAD •Transitoria: s/ Integración: Expresión 12-72 horas •Permanente: c/ Integración: Expresión 1-3 semanas
PARÁMETROS A CONSIDERAR •Tipos celulares disponibles •Expresión transitoria o permanente (estable) •Elementos de control de expresión adecuados
Common cell lines CHO
Epithelial
Chinese Hamster Ovary
HeLa
Epithelial
Human cervical carcinoma
MDCK
Epithelial
Canine Kidney
BHK
Fibroblast
Baby Hamster Kidney
Vero
Fibroblast
Monkey Kidney
WI-38
Fibroblast
Human fetal lung
3T3
Fibroblast
Mouse fibroblast
MARCADORES FENOTÍPICOS •Crecimiento en agar •Crecimiento con bajo suero •Cambios morfológicos •Rescate de la muerte de cultivos celulares primarios
MARCADORES BIOQUÍMICOS Indicadores •Anticuerpos específicos •Chloramphenicol acetyltransferase (cat) •β-galactosidase (β-gal) •Luciferase Selectores •Thymidine kinase (tk) •Xantine guanine phosphoribosyl transferase (xgprt) •Aminoglicoside phosphotransferase (apht/neor) •Dihydrofolate reductase (dhfr) •Hygromycin B phosphotransferase (hygr) Indicadores/Selectores •Green/Blue/Red fluorescence proteins (gfp/bfp/rfp)
MARCADORES BIOQUÍMICOS Indicadores •Anticuerpos específicos Ag + AbI Ag.AbI Ag.AbI + AbII. Ag.Ab.AbII.
: enzima, grupo fluorescente, grupo radioactivo
•Chloramphenicol acetyltransferase (cat) [14C] Chloramphenicol Ac- [14C] Chloramphenicol (Ac)2-[14C] Chloramphenicol
•β-galactosidase (β-gal, lac Z) lactosa galactosa + glucosa ONPG o-nitrofenol (amarillo) + galactosa Xgal X (azul) + galactosa
•Luciferase Luciferina + ATP Luciferina + ADP + h (luz)
Indicadores/Selectores •Green/Blue/Red fluorescence proteins (gfp/bfp/rfp) XFP + h1 (luz) XFP + h2 (luz)
1 >2
Selector: FACS
Fluorescence-activated cell sorter
Reporter gene systems 1. chloramphenicol acetyl transferase (CAT) CAT is a bacterial enzyme that catalyzes the transfer of acetyl groups from acetyl-coenzyme A to the antibiotic chloramphenicol. (chloramphenicol deactivation) thin-layer chromatographic sheet Chloramphenicol is radiolabelled
For mammalian cells it is laborous and expensive. Extract protein and measure activity…
β-galactosidase (βgal) systems
luciferase (luc) systems firefly species Photinus pyralis Expressed luciferase catalyses oxidation of compounds called luciferans ( ATP-dependent process) mouse with a strain of salmonella
luciferans emit fluorescense luminometer measurement Mice are injected with LUC+ salmonellas. Sensitive digital cameras allow non-invasive detection. For GT vectors pictures look the same
Green fluorescent protein (GFP) autofluorescent protein from Pacific Northwest jellyfish Aequorea victoria GFP is an extremely stable protein of 238 amino acids with unique post-translationally created and covalently-attached chromophore from oxidised residues 65-67, Ser-Tyr-Gly
ultraviolet light causes GFP to autofluoresce In a bright green color
Jellyfish do nothing with UV, The activate GFP by aequorin (Ca++ activated, biolumuniscent helper)
Green fluorescent protein (GFP)
GFP expression is harmless for cells and animals GFP transgenic mice from Osaka University (Masaru Okabe) GFP construct could be used for construct tracking in living organism GFP labelled image of a human tumor. Vessel on the tumor surface are visible in black
MARCADORES BIOQUÍMICOS Selectores •Thymidine kinase (tk):) dT +ATP dTMP +ADP dUMP dTTP
½ select. céls. tk-: HAT (hipoxantina, aminopterina, timidina) inhib: aminopterina
•Xantine-guanine phosphorybosil transferase (xgprt) Xantina XMP GMP guanina inhib: ac. aminofenólico precursores IMP inhib: aminpoterina ASMP AMP
½ selectivo p/toda cél.: AAMX (adenosina, aminopterina, ac. Aminofenólico, xantina) ASMP: ac. adenilosuccínico
•Aminoglicoside phosphotransferase (apht/neor) neomicina/kanamicina/geneticina (G418) antibiótico fosforilado (inactivo)
•Dihydrofolate reductase (dhfr) DHFTHF ½ selectivo en céls. dhfr-: ausencia de nucleósidos ½ selectivo p/toda cél.: methotrexate (MTX)
•Hygromycin B phosphotransferase (hygr) Hygromicina B antibiótico fosforilado (inactivo)
Gene amplification
TRANSFERENCIA GENÉTICA: METODOLOGIA
• Vectores virales • Vectores no virales Direccionamiento de vectores • Via de administración • Receptores celulares • Promotores específicos de tejido
• Vectores Virales Virus naturales (silvestres): •Crecen en todas las células •Infectan todas las células •Son patogénicos Virus terapeúticos (recombinantes): •Sólo crecen en células empaquetadoras •Infectan todas las células •No son patogénicos
Figure 1. Construction of recombinant adenoviral vectors. cDNA of interest is cloned into a shuttle vector which provides cDNA expression cassette (adenovirus ITR, E1 enhancer, adenovirus encapsidation signal, CMV promoter, and SV40 a polyadenylation signal). Homologous recombination sequences are also cloned in this vector. Adenovirus genome (e.g., pJM17 shown in the figure) and the shuttle vector containing the cDNA are cotransfected in 293 cells. Intracellular homologous recombination between the two DNAs results in a E1- recombinant genome; the numbers 0, 20, 100 represent the approximate map units. This recombinant genome is replication defective. However, in the presence of E1 proteins (provided in trans by 293 cells), the recombinant genome will replicate and form adenoviral particles.
Cytopathic Effect • Cytopathic Effect can be seen in cell monolayer • CPE is assessed at day 2, 4 and 7
Plaque Forming Units • In serial viral dilutions, areas of lysis are observed where cells are destroyed • Crystal Violet staining
Retrovirus
Adenovirus
Herpes virus
Virus Adeno asociados
8 kb
35 kb
30 kb
4,8 kb
Sólo en división activa Ex vivo o in situ
En división activa o sin división Ex vivo o in situ
En división activa o sin división Ex vivo o in situ
En división o quizás sin división Ex vivo o in situ
Estable
Transitoria
Transitoria
Posiblemente estable
Moderado
Elevado
Moderado
Moderado
Posible integración mutagénica
Reacciones inflamatorias/ inmunitarias
No
Sí
Sí
Sí
Recombinación con el hospedador
Improbable
Posible
Posible
Improbable
Recombinación con el virus parental
Imposible
Posible
Posible
Posible
VECTORES VIRALES Tamaño máximo del gen terapeútico Células objetivo
Administración Expresión del gen terapeútico Indice de expresión del gen terapeútico Riesgos
Inmunidad preexistente en el hospedador
Posible integración mutagénica
Posible integración mutagénica
• Vectores no Virales •Microinyección / Perforación (DNA desnudo) •Precipitación con fosfato de calcio •Liposomas aniónicos •Complejos DNA/lípido catiónico: lipoplex •Complejos DNA/polycatión: polyplex •Conjugados moleculares •Dendrímeros: PEI •Hydrogel •Nanoesferas Biopolímero-DNA •Complejos LPD •Inyección a presión •Electroporación •Cañón génico •Ultrasonido •Campo magnético
Microinjection
Transfection
Lipofection
Electroporation
Liposomes Why naked DNA? Lets’ wrap it in something safe to increase transfection rate Lipids – is an obvious idea !
Therapeutic drugs
Liposomes are formed by the self-assembly of phospholipid molecules in an aqueous environment. Anionic liposome
www.emc.maricopa.edu/faculty/ farabee/BIOBK/
Cationic liposomes Positively charged lipid heads
positively charged lipid droplets can interact with negatively charged DNA to wrap it up and deliver to cells Inside liposomes DNA is resistant to degradation Lipofectin, lipofectamine, lipofectase….
Lab procedure for liposome preparation
Lípidos catiónicos: Citofectinas
Complejo DNA/lípido catiónico: Lipoplex
Electron photomicrographs of lipid-DNA complexes.
Electron photomicrographs of lipid-DNA complexes. Lipid-DNA complexes were prepared at a ratio of 5:1 (w/w). PanelA shows appearance of plasmid DNA without lipid. Panels B-Fshow examples of the various types of complexes that were observed. In panelB the open arrow shows uncomplexed plasmid and the solid arrow shows plasmid complexed with lipid. Bar indicates 100 nm. DMRIE:DOPE 1:1 Zabner J et al. J. Biol. Chem. 1995;270:18997-19007
Electron photomicrographs of COS cells transfected with gold-labeled DNA complexed with lipid (DMRIE:DOPE 1:1).
Zabner J et al. J. Biol. Chem. 1995;270:18997-19007
Electron photomicrographs of COS cells transfected with gold-labeled DNA complexed with lipid. Cells were exposed to DMRIE/DOPE•DNA complexes and then removed for electron microscopy at the following times: panel A, 5 min;panel B, 30 min; panel C, 1 h;panel D, 6 h; panel E, 24 h;panel F, 24 h. Cells transfected with plasmid that had not been labeled with gold are shown inpanelF. Bar indicates 100 nm.
Protein-mediated plasmid nuclear import. Transcription factors and other nuclear proteins normally enter the nucleus through interactions between their NLSs and importin family members. However, if plasmids containing certain sequences that act as scaffolds for transcription factors and other DNA binding proteins (termed ‘DTS’, or DNA nuclear targeting sequences) are deposited into the cytoplasm during transfection, they can form complexes with these proteins, thereby attaching NLSs to the DNA. Some, but not all, of these NLSs may be in a conformation able to interact with importins for transport of the DNA– protein complex into the nucleus through the nuclear pore complex.
Methods to enhance plasmid nuclear import. A number of different approaches have been developed to promote recognition of plasmids by importin family members to increase nuclear import. These include peptide-nucleic acid clamp-conjugated NLS peptides bound to DNA, sequence-specific DNA binding proteins bound to DNA, NLS peptides covalently attached to DNA and NLS peptides electrostatically bound to DNA.
•Lipids / Polycations / DNA (LPD) Complexes LPD-I: Cationic Liposome Entraped, Polycation – Condensed DNA
LPD-II: Anionic Liposome Entraped, Polycation – Condensed DNA
How to make the gene expressed in the target cell? Four basic types of expression vectors : 1. Minimal promoters used to study gene regulatory elements such as enhancer elements (in the lab studies). 2. Constitutive promoters used to direct expression of gene products to produce enough target protein. 3. Cell-specific promoters used to specify expression to target cells (tissue-specific promoters in case of GT) 4. Regulated promoters used to control the on/off expression of cloned genes.
JUST TATA box and reporter Sites for constitutive transfactors
Sites for cell-specific transfactors
Sites for small ligand responsive transfactors
www.biochem.arizona.edu
Examples of often used promoters Minimal promoter
deleted Drosophila alcohol a ubiquitous low level promoter that is used to construct dehydrogenase promoter reporter genes
High activity constitutive promoters
cytomegalovirus immediate early promoter (CMV)
high level gene expression in mammalian cells
simian virus 40 early enhancer/prom. SV40
Moderately high level gene expression in mammalian cells
whey acidic protein promoter (WAP)
targeted expression of genes to mammary tissue in animals
lymphocyte-specific tyrosine kinase promoter (LCK)
targeted expression of genes to mouse thymocytes for immunological studies
mouse mammary tumor virus long terminal repeat enhancer/promoter MMTV)
steroid-regulated gene expression in mammalian cells
TET-off and TET-on systems based on tet-resistance operon of the E. coli Tn10 transposon
Regulated by doxycycline (tetracycline)
Cell-specific promoters
Regulated promoters
Generalized Eukaryotic Cloning Vector • Prokaryotic origin of replication, selectable marker • Eukaryotic origin, selectable marker • MCS with eukaryotic promoter and transcriptional terminator/polyadenylatio n signal
Mammalian Systems • Sometimes insect cells simply don’t carry out proper/necessary glycosylations • Other processing may also not occur • Mammalian cell systems are more expensive by may be required for active product
Mammalian Expression Vector
• “I” is an intron that enhances expression • Other signals similar to insect and prokaryotic vectors
Translation Control Elements
• • • • • •
K - Kozak Sequence (equiv. To rbs) S - for secretion signal peptide T – tag peptide for purification P – proteolytic cleavage sequence SC – stop codon for translation 3’UTR – proper sequences for efficient translation and mRNA stability (e.g. polyadenylation sequence)
Two Vector Expression System
•Useful for proteins of two different polypeptides
Two Gene Expression Vector
Bicistronic Expression Vector
IRES from mammalian virus
•Gives more uniform level of expression of two genes
Tetracycline-responsible systems Manfred Gossen and Hermann Bujard control the expression of genes that have been cloned downstream of a promoter containing tetracycline receptor (TetR) binding sites. VP is derived from the herpes simplex virus VP16 protein. VP – RNA pol interacting part TET-VP producing vector TET-OFF system TetR - tet binding part Gene of interest expressing vector The "Tet-off" system is repressed in the presence of the doxycycline
www.biochem.arizona.edu
"Tet-on" system is activated in the presence of doxycycline the DNA binding domain of the Tet-on regulator (rTetR) contains mutations
RNA-pol repressor that only binds DNA in the absence of ligand is converted to a ligand-dependent DNA binding protein.
Conjugados moleculares
Transfecc.
Liposomas catiónicos
Vector ideal
Capacidad de inserción
Irrestricto
Irrestricto
Irrestricto
1-1000 kb
Eficiencia de transferencia
Eficiente
Eficiente
Eficiente
Muy eficiente
Integración
No
No/Rara
No
Sí/No
Generación virus recombinantes
No
No
No
No
?
?
?
No
Expresión de proteínas virales
No
No
No
No
Expresión estable
Transitoria
Transitoria
Transitoria
Sí/No
?
Sí
Sí
Sí
No
Sí
Sí
Sí
VECTORES NO VIRALES
Oncogenicidad
Administración in vivo Transmisión a céls. quiescentes
Top Fifteen Biopharmaceuticals (1999 Sales) Epogen Amgen Amgen Neupogen Schering-Plough Infergen Humulin Eli Lilly Avonex Biogen SmithKline Beecham Engerix Bayer Corporation KoGENate Cerezyme Genzyme Tissue Repair Betaseron Berlex Laboratories Pharmacia & Upjohn GenoTropin Immunex Enbrel ReoPro Centocor Gonal-F Serono Laboratories RECOMBIVAX HB Merck MedImmune Synagis
Erythropoeitin $1,770 G-CSF $1,245 Interferon $1,010 Insulin $ 880 Interferon 1a $ 570 Hepatitis B vaccine $ 505 Factor VIII $ 470 Glucocerebrosidase $ 430 Interferon 1b $ 395 Human growth hormone $ 380 TNF receptor $ 340 Monoclonal antibody $ 335 Follicle stimulating hormone Heptatis B vaccine $ 275 Monoclonal antibody $ 275
$ 320
TOTAL: $9,200
Just a few products could be produced by using both mammalian and microbial systems
The resulting proteins are found to have comparable structures and activity profiles although strictly speaking not being necessarily identical http://www.lonza.com/group/en/news/downloads/speeches.Par.0028.File2.tmp/part2.pdf
Mammalian system demands on the grow
http://www.lonza.com/group/en/news/downloads/speeches.Par.0028.File2.tmp/part2.pdf