Una gráfica de puntos está constituida por 2 ejes perpendiculares de aproximadamente la misma

Física. GRÁFICAS Y PROPORCIONALIDAD. Una gráfica de puntos está constituida por 2 ejes perpendiculares de aproximadamente la misma longitud. En sus ex

11 downloads 118 Views 75KB Size

Recommend Stories


2 EST
4/26/2016 Vamos a comenzar en breve, a las 1 CST / 2 EST El Sexto Webinar en Español auspiciado por el ACS y la SQM http://bit.ly/IndustriaFarma 1

CHASIS SEMIRREMOLQUE 2 EJES
C/Font de Penella, s/n 46469 Beniparrell (Valencia) Apto. Correos: 271 en Silla Tfno: 961.219.290 Fax: 961.218.001 http://www.sical.es E-mail:sical@si

DIETA DE LOS PUNTOS. Adelgazar por Puntos:
DIETA DE LOS PUNTOS Adelgazar por Puntos: Algunos endocrinos, dietistas y nutricionistas intentan innovar y hacer nuevas dietas adecuadas a los gusto

Padres e hijos en la misma empresa. 25 puntos críticos
padreshijos5 23/8/06 14:06 Página 44 Padres e hijos en la misma empresa. 25 puntos críticos “Haz como te digo, hijo mío, porque tengo muchos años

2.5. Ejecución de la soldadura por puntos
2 . S O L D A D U R A P O R P U N T O S D E R E S I S T E N C I A E L É C T R I C A 2.4.3. Pistola de soldadura Se emplea en operaciones de sol

Story Transcript

Física. GRÁFICAS Y PROPORCIONALIDAD. Una gráfica de puntos está constituida por 2 ejes perpendiculares de aproximadamente la misma longitud. En sus extremos se indican con flechas, el sentido en que crecen las magnitudes. Se especifican las magnitudes en estudio y junto a ellas se colocan las correspondientes unidades entre paréntesis.

-

en el eje horizontal (abscisas) se colocan los valores correspondientes a la variable independiente.

-

en el eje vertical (ordenadas) se colocan los correspondientes a la variable dependiente.

-

la intersección de los ejes no tiene que coincidir con el cero de ambas escalas, pero siempre resulta de utilidad.

-

cada eje debe tener una escala apropiada teniendo en cuenta el rango de valores que tenemos que graficar (dicha escala debe estar indicada)

-

para ubicar los puntos se utilizan líneas auxiliares, generalmente trazadas de forma punteada o que luego de construir la gráfica se pueden borrar.

-

luego de marcados los puntos trazamos la línea de tendencia, dependiendo de la forma en que se encuentren alineados los puntos (recta o curva).

Ejemplo:

eje vertical (ordenadas)

x (m )

x = f (t )

líneas auxiliares

línea

x2

ó

eje horizontal (abscisas)

t1

1/5

tendencia

curva del gráfico

x1

Prof. Soledad Portillo.

de

t2

t (s )

magnitud

y correspondiente

unidad entre paréntesis

Física. Pendiente de una recta: La pendiente es el cociente entre la variación de la magnitud que colocamos en el eje vertical y la correspondiente variación de la magnitud del eje horizontal. Ejemplo:

pendiente = como

∆A ∆B

A

∆A = a2 − a1 y ∆B = b2 − b1

pendiente =

(a2 − a1 ) (b2 − b1 )

a2 ∆A

a1

∆B

b1

b2

B

Significado del área: El significado físico del área de una gráfica representa ocasionalmente el valor de una magnitud física. Por lo tanto cuando hablamos de áreas no nos referimos a su valor e unidades de superficie, sino al resultado que surge de operar con las unidades de las magnitudes representada en cada eje. Ejemplo: La gráfica anexa corresponde a los cambios de velocidad de una partícula en función del tiempo

v = f (t ) .

El área de la gráfica representa el

el área de la gráfica representa

v(m/s)

el desplazamiento ( ∆x )

5,0

desplazamiento realizado por la misma en el tramo de tiempo seleccionado (200 s).

⇒ ∆x = área triángulo = ∆x =

2

(200s.5,0m / s ) = 500 m 2

Prof. Soledad Portillo. 2/5

(b.h )

0

200

400

600

t(s)

Física. GRÁFICOS CON INCERTIDUMBRE.

Cuando los valores que debemos graficar tienen incertidumbre, sustituiremos los puntos de la gráfica por rectángulos, denominados rectángulos de incertidumbre.

a ± a

coordenadas del punto

b ± b

la intersección de las líneas auxiliares determinan el rectángulo

de

(coordenadas

incertidumbre; del

punto)

cada

tendrá

pareja su

de

valores

rectángulo

de

incertidumbre

Para trazar la curva de la gráfica debemos tener en cuenta los rectángulos de incertidumbre, estos nos permiten trazar diferentes rectas. a- Recta de máxima pendiente: es la recta que pasa por todos los rectángulos de incertidumbre y tienen mayor pendiente (roja) b- Recta de mínima pendiente: es la recta que pasa portados los rectángulos de incertidumbre y tiene menor pendiente (azul)

Calculamos la pendiente de ambas rectas que denominamos pendiente máxima (pmáx)

y

pendiente

mínima

(pmín).

Luego

hallamos la pendiente media:

pmedia =

( pmáx + pmín ) 2

y la incertidumbre:

p =

pmáx − pmín 2

la

pendiente

correspondiente

pmedia + p Prof. Soledad Portillo. 3/5

tiene

su

incertidumbre:

Física. Proporcionalidad directa.

Dos magnitudes variables A y B que se relacionan en forma directa proporcionalmente cumplen dos condiciones: a- la gráfica

A = f (B ) es una curva recta que pasa por el

origen de coordenadas. b- el cociente A / B de todas las pareas de valores es constante. •

A se le denomina constante de B

pendiente =

proporcionalidad.

A =K B

A = K .B



si



la relación se establece: A

∝B

Proporcionalidad inversa.

Dos magnitudes variables A y B que se relacionan en forma inversamente proporcional cumplen: a- La gráfica

A = f (B ) es una hipérbola.

b- El producto A.B de todas las parejas de valores es constante. •





si la gráfica

A = f (B ) es una curva, es posible que la

sea una recta, la pendiente no

relación entre las variables A y B sea inversamente

tiene un valor único en todo el

proporcional, pero podría no serlo.

gráfico, cada punto del gráfico

1 ; lo que implica que B 1 A es directamente proporcional al inverso de B: A ∝ . B si A.B = K

→ A=

K B

ó

A = K.

corresponde con un valor de pendiente

Para verificar una relación inversamente proporcional mediante una gráfica, debemos graficar

1 A = f   y obtener una gráfica B

que pase por el origen de ambas coordenadas.

Prof. Soledad Portillo. 4/5

En el caso de que el gráfico no

Física. Cambio de variable. En muchas ocasiones una variable puede ser directa o inversamente proporcional a una función de la otra variable.

Ejemplo:

A = B 2 ; la variable A no es directamente proporcional a B, pero si lo es a B2; para comprobar

( )

esto, basta graficar A = f B cocientes

A

B2

2

y ver si es una recta que pasa por el origen o realizar los

verificando que todos sean iguales.

Otros casos:

⇒ La gráfica obtenida no siempre debe responder a A = B 2 ; por lo tanto si luego de graficar

( )

A = f (B ) , la gráfica tiene forma curva, pero no se obtiene una recta al graficar A = f B 2 es posible que la “función” sea del tipo

A = K .B n siendo “ n ” un número natural; al obtener en la gráfica una

recta que pase por el origen, comprobamos que A ∝ B . n

También podemos tener una función pasa por el origen.

Prof. Soledad Portillo. 5/5

A = K.

1 ; debemos graficar hasta obtener una recta que Bn

Get in touch

Social

© Copyright 2013 - 2024 MYDOKUMENT.COM - All rights reserved.