UNIVERSIDAD DE MAGALLANES VICERRECTORIA ACADEMICA ESCUELA TECNOLOGICA

UNIVERSIDAD DE MAGALLANES VICERRECTORIA ACADEMICA ESCUELA TECNOLOGICA   “REMODELACION Y CONSERVACION DEL PUENTE PRESIDENTE IBAÑEZ PUERTO AYSEN”   J

47 downloads 119 Views 4MB Size

Recommend Stories


UNIVERSIDAD ABIERTA PARA ADULTOS UAPA VICERRECTORIA ACADEMICA ESCUELA DE TURISMO
UNIVERSIDAD ABIERTA PARA ADULTOS UAPA VICERRECTORIA ACADEMICA ESCUELA DE TURISMO PROGRAMA DE LA ASIGNATURA CULTURA, FOLKLORE Y PATRIMONIO DOMINICANO

UNIVERSIDAD ABIERTA PARA ADULTOS UAPA VICERRECTORIA ACADEMICA ESCUELA DE PSICOLOGÍA
cu UNIVERSIDAD ABIERTA PARA ADULTOS UAPA VICERRECTORIA ACADEMICA ESCUELA DE PSICOLOGÍA PROGRAMA DE LA ASIGNATURA TERAPIA DE JUEGO CARRERAS PSICOLOGÍ

UNIVERSIDAD DE LA SALLE VICERRECTORIA ACADEMICA OFICINA DE BIBLIOTECA
UNIVERSIDAD DE LA SALLE VICERRECTORIA ACADEMICA OFICINA DE BIBLIOTECA PROYECTO : FOMENTO DEL USO DE LA INFORMACION CIENTIFICO TECNICA EN LOS PROCESOS

UNIVERSIDAD ABIERTA PARA ADULTOS UAPA VICERRECTORIA ACADEMICA ESCUELA DE PSICOLOGIA PROGRAMA DE LA ASIGNATURA
UNIVERSIDAD ABIERTA PARA ADULTOS UAPA VICERRECTORIA ACADEMICA ESCUELA DE PSICOLOGIA PROGRAMA DE LA ASIGNATURA PSICOLOGIA GENERAL I CARRERAS QUE IMPAR

UNIVERSIDAD ABIERTA PARA ADULTOS UAPA VICERRECTORIA ACADEMICA ESCUELA DE CIENCIAS JURIDICAS Y POLITICAS DERECHO
UNIVERSIDAD ABIERTA PARA ADULTOS UAPA VICERRECTORIA ACADEMICA ESCUELA DE CIENCIAS JURIDICAS Y POLITICAS PROGRAMA DE LA ASIGNATURA DERECHO PENAL I (Crí

UNIVERSIDAD ABIERTA PARA ADULTOS UAPA VICERRECTORIA ACADEMICA ESCUELA DE PSICOLOGIA PSICOLOGÍA EDUCATIVA I
UNIVERSIDAD ABIERTA PARA ADULTOS UAPA VICERRECTORIA ACADEMICA ESCUELA DE PSICOLOGIA CARRERA PSICOLOGÍA EDUCATIVA I PROGRAMA DE LA ASIGNATURA • PSICO

Story Transcript

UNIVERSIDAD DE MAGALLANES VICERRECTORIA ACADEMICA ESCUELA TECNOLOGICA

 

“REMODELACION Y CONSERVACION DEL PUENTE PRESIDENTE IBAÑEZ PUERTO AYSEN”  

José Carlos Finlez Gallegos Año 2009

UNIVERSIDAD DE MAGALLANES VICERRECTORIA ACADEMICA ESCUELA TECNOLOGICA

“REMODELACION Y CONSERVACION DEL PUENTE PRESIDENTE IBAÑEZ PUERTO AYSEN”

“Trabajo de titulación presentado en conformidad a los requisitos para obtener el titulo Técnico universitario en Construcción Mención Obras Civiles”.

“Profesor Guía: Sr Raúl Gallardo”.

José Carlos Finlez Gallegos Año 2009

 

El siguiente Proyecto de aplicación ha sido aprobado con la siguiente calificación:

José Carlos Finlez Gallegos.

Proyecto de Aplicación

:

Examen de Proyecto de Aplicación : Nota Final

:

Sr: Jorge Reyes Director Escuela Tecnológica

30 de Diciembre 2009  

     

Resumen

El siguiente Proyecto de Aplicación va enfocado específicamente a la remodelación y conservación del Puente Presidente Ibáñez, Puerto Aysén. Se describirán todos los pasos realizados para mejorar la apariencia superficial para Puente Presidente Ibáñez ya que este no lo presentaba. Los materiales y maquinarias que fueron utilizados para desarrollar los procesos como fue la instalación de faenas, la limpieza de las estructura metálica del Puente Presidente

Ibáñez, aplicación de pinturas anticorrosivas y pinturas de terminación,

demoliciones y reparaciones de hormigones que se encontraban en mal estado de la vía en los extremos del puente, modificación de las barreras camineras, reparaciones en las juntas de dilatación y el mejoramiento del sistema de iluminación.          

i   

Índice Pagina Capitulo I

Capitulo II

Capitulo III

Introducción.

1

Objetivos.

1

Puente Presidente Ibáñez.

1

Motivos para Realizar el Proyecto.

3

Descripción General del Proyecto.

4

Partidas del Proyecto.

4

Cubicación del Puente Presidente Ibáñez.

9

Tabla de Valores Cubicación.

15

Tablas de Costo.

15

Capitulo IV Instalación de Faenas.

17

Programa de Trabajo.

18

Limpieza y Pinturas aplicada en la Estructura Metálica.

20

Limpieza Estructuras Metálicas.

20

Descripción del Método de Limpieza Utilizado.

20

Tipos de Arenados.

21

Maquinas y Herramientas Utilizadas en el Arenado

22

Limpieza Forma Manual.

25

Pinturas.

27

Pintura Anticorrosiva.

28

Pintura de Terminación.

28

Instrumentos Utilizados para Medir Espesores.

29

Capitulo V

i   

Plataforma.

31

Imágenes Plataforma.

32

Capitulo VI Demolición y Reposición de Hormigones.

34

Demolición de Hormigones.

34

Planillas de Nivelación Sector Norte y Sur.

36

Áridos.

38

Autohormigoneras.

39

Capitulo VII Modificación Barreras Camineras y Reposición Empotramiento Elástico de Cables Principales.

40

¿Que son las Barreras Camineras?

40

Barrera Caminera de Doble Onda.

41

Detalle de Perfil tipo Z y Barreda de Doble Onda.

42

Reposición Empotramiento Elástico de Cables principales.

43

¿Que es Espuma de Poliuretano?

44

Sikaflex 11fc

44

Capitulo VIII Instalación Eléctrica

Conclusión Bibliografía

46

Canalización Subterránea

47

Canalización ala Vista.

48

Conductores.

48

Postes.

49

Luminarias.

51

i   

 

  1   

Introducción 1.1 Objetivos: El objetivo general del siguiente proyecto de aplicación es aportar un

material

académico específicamente sobre la renovación y conservación del puente colgante actualmente más grande de Chile, como lo es el Puente Presidente Ibáñez, mostrando los pasos realizados para llegar a una nueva visualización y seguridad del puente. 1.2-Puente Presidente Ibáñez: El Puente Presidente Ibáñez ubicado sobre el río Aysén, es un gran exponente de la tipología de infraestructura pública desarrollada en las décadas del 50 y 60. Su estructura como puente, se encuentra apoyada sobre bases de hormigón armado, mediante dos grandes arcos metálicos de 25 metros de altura cada uno, los cuales soportan 8 cables de acero por lado, donde cuelgan 22 tirantes que sujetan la losa de la vía. El Puente Presidente Ibáñez tiene una extensión de 210 metros de longitud, siendo así, el puente colgante más largo de Chile. La iniciativa de la construcción de esta estructura fue del Presidente Carlos Ibáñez del Campo (1952-1958), pero se construyó entre los años 1961 y 1966 en el gobierno de Jorge Alessandri rodríguez (1958-1964), siendo

inagurada en el año 1968 en el

gobierno de Eduardo Frei Montalva (1964-1970), actualmente esta estructura se considera monumento nacional. (Fig-1.1.). El puente colgante posee gran importancia, debido a que une Coyhaique con Puerto Chacabuco, este último es donde llegan la mayor parte de turistas nacionales y extranjeros y se ven prácticamente obligados a pasar por este gran puente para visitar cualquier lugar de la región.

  2   

Además, Puerto Chacabuco es el abastecedor de combustibles para la región, ya que es ahí donde se encuentran los depósitos de combustibles, los cuales son destinados para abastecer a la región.

Fig-1.1. Puente Presidente Ibáñez. www.google.cl/imagenes

También el Puente Presidente Ibáñez cumple otras 2 funciones importantes ya que es el soporte de las tuberías de agua potable y aguas servidas para conectar las dos riveras de la ciudad.

1.3. Motivos para Realizar el Proyecto:

  3   

Puente Presidente Ibáñez construído hace mas de 4 décadas, no presentaba buen aspecto visual, las pinturas se encontraban en mal estado, existían sectores donde se visualizaba gran cantidad de sarro y corrosión (Fig-1.2.). Existencia de grandes desniveles de las vías en los extremos del puente. La iluminación no se encontraba en buen funcionamiento, en sectores, las canalizaciones se encontraban dañadas, solo existía iluminación para la vía. Los mejoramientos para el Puente Presidente Ibáñez consistirá el la renovación de pinturas, la renovación de hormigones en mal estado que se encuentren en los extremos del puente, brindar una mayor seguridad a los vehículos y peatones que transiten por este, mejorando la iluminación y modificando las barreras camineras además reposición empotramiento elástico de cables principales.

Fig.1.2. Imagen desde una de las torres, Visualización de sarro. Constructora Ingesur.

Descripción General del Proyecto

  4   

2.1- Partidas de Proyecto: Por ende se llevó a cabo el proyecto de remodelación y conservación del PuentePresidente Ibáñez donde se realizaran trabajos de: • Limpieza en toda la estructura metálica. • Demoliciones y reposiciones de hormigones. • Mejoramiento en el sistema de alumbrado. • Modificación de las barreras camineras. • Reposición empotramiento elástico de cables principales.

2.1.a- Limpieza de Estructuras Metálicas: El arenado a utilizar será tipo SSPC-SP6 Limpieza por Chorro Abrasivo a Grado Gris Comercial. La limpieza por chorro abrasivo a grado gris comercial se define como el método para preparar superficies de metal para pintarlas, removiendo las carilla de laminado, el oxido o las materias extrañas mediante el uso de abrasivos impulsados a través de toberas por aire comprimido, hasta el grado especificado. El acabado final de una superficie que ha sido limpiada mediante chorro abrasivo gris comercial puede definirse como aquella en la cual todo el aceite, la grasa, la suciedad, la cascarilla de laminado y las materias extrañas han sido completamente eliminados de la superficie y toda la herrumbre, la cascarilla de laminado y la pintura vieja han sido completamente removidas, con la excepción de ligeras sombras, rayas o decoloraciones causadas por manchas de herrumbre y pintura. Si la superficie tiene picaduras, puede encontrarse herrumbre y resto de pintura en el fondo de las mismas. Por lo menos 2/3 de cada

  5   

pulgada cuadrada de superficie estará libre de residuos visible y el resto estará limitado a ligeras decoloraciones, ligeras sombras o ligeros residuos como los mencionados anteriormente. La arena a utilizar deberá ser cuarzosa, con granulometría entre mallas 16 y 40, secada previamente en horno u otro dispositivo o sistema adecuado. Se aceptará un contenido de arcilla no superior al 3%, cloruros y sulfatos al 0.3%, y carbonatos bajo el 2%, en peso. En toda la estructura previamente limpia de acuerdo al instructivo

“Limpieza de

elementos metálicos”, se aplicarán dos manos de revestimiento epóxico autoimprimante con 82% de sólidos, con un espesor total de la película seca de 125 micrones. Sobre la pintura anticorrosiva se aplicarán dos manos de pintura Poliuretano poliéster con 65% de sólidos en volumen, con un espesor de la película seca de 75 micrones en total. Las pinturas pueden aplicarse con pistola o brocha, o una combinación de ambos sistemas, si la pintura que se va aplicar así lo requiere. La cerda de las brochas debe tener suficiente cuerpo y longitud para extender la pintura en una película uniforme. Previo a su aplicación, las pinturas deben ser mezcladas en mezcladores mecánicos el tiempo suficiente para que los pigmentos y el solvente utilizado se unan totalmente. Los componentes de la pintura deben permanecer unidos durante el proceso de aplicación. La mezcla de los componentes se debe ceñir estrictamente a las especificaciones y formulaciones del fabricante, no se permitirá ningún adelgazamiento de la mezcla, a no ser que sea respaldado por el fabricante en casos especiales.

  6   

2.1.b-Demolición y Reposición de Hormigones: El hormigón deberá ser elaborado a máquina. Para la consolidación se exigirá el uso de vibrador de inmersión, esta faena debe ser ejecutada por personal competente bajo la responsabilidad del Contratista. Cuando el hormigonado de un elemento se efectúe por etapas, al reiniciarse el hormigonado se rasparán y limpiarán las superficies de contactos, limpiando con agua y escobilla metálica las superficies de hormigones anteriores. Los hormigones se deberán proteger a lo menos durante los primeros 8 días de las trepidaciones, cambios bruscos de temperatura y del sol directo, así también se mantendrán en estado de permanente humedad. El hormigón a utilizar en las vías será un H30 con un espesor de 20 cm de acuerdo al molde. 2.1.c-Mejoramiento del Sistema a iluminación Se debe considerar una caja de medidor eléctrico normalizada independiente de otros tableros, en ella irá incorporado el equipo de medida. El equipo debe estar homologado por la compañía distribuidora local. En la misma caja de medidor se instalará una protección automática de 3x25 A. Se debe construir una malla de tierra. Se realizarán excavaciones en terreno, para dar cabida al tubo Conduit PVC, para ello es necesario hacer una zanja de 0,50 m. de ancho x 0,7 m. de profundidad. La instalación de los ductos debe cumplir los siguientes pasos: 1.- Se debe realizar un encamado, con una capa de arena compactada de 50 mm.

  7   

2.- Instalar los ductos sobre la capa de arena. Asegurándose de que las uniones queden herméticas. 3.- Cubrir los ductos con una capa de material seleccionado, proveniente de la misma excavación, con objetos duros no mayores a 1 cm. Compactar el material en capas de 10 a 15 cm. Con un espesor mínimo de 150 mm. 4.- A través de todo el largo del ducto se debe considerar una protección mecánica de hormigón pobre con un espesor de 10 cm y un ancho de 20 cm. 5.- Completar el relleno con material de la excavación, eliminando los bolones, piedras grandes o material de desecho. Las luminarias consideradas son aptas para el uso en iluminación vial y cumplen con los requerimientos básicos de iluminación exigidos. Van montadas en un brazo recto y llevan todo el equipo eléctrico incorporado. La potencia nominal es de 150 W para lámpara de sodio de alta presión. Las dimensiones de las cámaras equivalen a la tipo C de la Norma chilena, también podrán usarse tubos de hormigón prefabricado de dimensiones equivalentes. En todas las canalizaciones subterráneas se usará cable con aislamiento tipo XLPE o EPR, apto para uso subterráneo, en tableros se usara cables tipo THHN o THW, por interior de poste también se acepta el uso de cable THHN o THW. Los postes proyectados son del tipo octogonal cónico con brazo recto, y con placa de montaje. Todos los elementos del poste deben venir soldados y galvanizados desde fabrica, con excepto la tapa de la escotilla y el brazo superior, que se monta apernado.

  8   

Se tiene contemplado la construcción de cámaras subterráneas a la llegada a cada poste y en la salida desde el tablero. 2.1.d- Modificación de las Barreras Camineras: Se procederá al retiro de las barreras existentes y a la colocación de doble barrera caminera. Estas barreras camineras serán de material galvanizado simple de doble onda. Se deben instalar 420 m de doble barrera caminera. Para la colocación de la doble barrera caminera es necesaria la ampliación del perfil Z existente. La extensión de perfil Z será de 0.82mts. de fierro galvanizado, quedando así a una altura final de 1.20mts. La unión de los perfiles tipo Z se realizara mediante electrodos E6011 y para darle una mejor terminación se utilizara electrodos E7018. Se deberá utilizar galvanizado en frio como revestimiento para la unión del perfil existente con el perfil de modificación. Este trabajo de pintado puede ser de forma manual con brochas. 2.1.e-Reposición Empotramiento Elástico de Cables Principales: Se deberá sacar aproximadamente 50 cm la brea existente en los extremos de los cables del Puente Presidente Ibáñez, lo cual será rellenado con 45cm de espuma de poliuretano y posteriormente con 5 cm de sikaflex 11FC.

  9   

Cubicación Puente Presidente Ibáñez

Se desarrolló la cubicación del Puente Presidente Ibáñez

para calcular los m2 de

arenado comercial que se utilizarían además de la pintura anticorrosiva y para la pintura de terminación.

3.1-Cubicación:       TORRES Y TRAVESAÑOS =577,77 M2 (2unid:1.155,54 m2)

PL tip 2

PL tip 2

0 30 X 75 PL tip 3

0 30

X

75

PL tip 1

0 30

75

75

X

X

0 30

PL tip 2

PL tip 2

940

        Fig-3.1. Torre y travesaño. Constructora Ingesur

  10   

PL tip 1

PL tip 2 PL tip 3

60 30

38

10

10

23

30

30

23

30

30

103

61

74

61

60

(0,023 x 2 )x 84 = 3,87 m2

61

0,978 x 2 = 1,96 m2

300 X 75

(0,572 x 2 )x8= 9,16 m2

= 1,84 ml x (13,5mlx2) = 49,7 m2

TORRES = 25 MT. = 120 m2+0,77 m2=120,77 m2 120,77 m2x 2(torres)= 241,54 PINTURA INFERIOR TORRES = 30,0 M2 PINTURA INTERIOR TORRES = 241,54 M2

Fig‐3.2.Cubicacion de Torres y Travesaños .Constructora Ingesur       

MODULO TIPO 1 ORIENTE Y PONIENTE=143,58 (4unid. total: 574,32 m2) PL tip 3

PL tip 5

PL tip 5

9,20

PL tip 6

306

PL tip 4

308

PL tip.2

246,8

IN 220 x 214

PL tip.2

26

PL tip.2

IN 220 x 214

IN 220 x 214

IN 220 x 214

2C 100 X 260

298,8

26

306

2C 100 X 260 PL tip 5

PL tip 3

2C

PL tip 5

14 0X

60 Vigas IN (4 unid)

PL tip 2

12,5 20,5

46,0

57

46,0

51,0

26 25

25

25 73

40

2,3 x 6,86 x 4= 63,2 m2

PL tip 6

PL tip 5

32 ,4

9,2

20,5 12,5

PL tip 4 50

50

,4 32

50,20

PL tip 3 9,5

PL tip 1

2C 100 X 260

50

25

40

50

49

50

1,84 x 9,2 x 2= 34 m2

73

0,1 x 72 = 7,2 m2

0,55 x 6 = 3,3 m2

0,20 x 30 = 6,0 m2

0,6 x 4 = 2,4 m2

70

0,80x 10 = 8,0 m2

0,92 x 2 = 1,84 m2

Fig.3.3. Cubicación modulo tipo 1oriente y poniente. Constructora Ingesur. 

     

C 140x60 1,34 (area) x21ml= 28,14 m2

  11   

PL tip 3

PL tip 5

PL tip 5 9,00

PL tip 6

300

PL tip 4

300

PL tip.2

246,8

IN 220 x 214

PL tip.2

26

PL tip.2

IN 220 x 214

PL tip 1

IN 220 x 214

IN 220 x 214

2C 100 X 260

298,8

26

300

2C 100 X 260

PL tip 2

PL tip 1

PL tip 3

PL tip 3

cm . PL tip 6

PL tip 5

PL tip 4 57

25 73

40 9,5

9,2

PL tip 3

PL tip 3

46 ,0

46 ,0

12,5 20,5

PL tip 4

PL tip 5

14 PL tip 3 0X 60 x1 74

26 50

25

25

51,0

50

50

25

40

,4 32

50,20

20,5 12,5

2C

PL tip 3

32 ,4

PL tip 3

50

49

50

73

0,1 x 72 = 7,2 m2

0,5 x 6 = 3,0 m2

0,20 x 30 = 6,0 m2

70

0,55 x 4 = 2,2 m2

0,73 x 10 = 7,3 m2

0,82 x 2 = 1,64 m2

Fig-3.4. Cubicación modulo tipo 2 oriente y poniente. Constructor Ingesur

VIGA RETICULADA TIPO = 53,3 m2 (70 unid. total: 3.731 m2) PL tip.2

PL tip 1 190

1140

PL tip.2

PL tip.1

380

PL tip.1

380

190 2 150 X 100 138

PL tip 3 PL tip.2

2 150 X 100 PL tip 4

0 2 10 10 0X 0 X PL tip.2 10 10 2 0

2 0 15 15 PL tip.2 0X 0X 15 15 0 2

2

0X 15

0 15 PL tip.2

2

15 0X

PL tip 4 15 0

PL tip 1

0,28 x 3 = 0,84 m2

42

20

42

20

32

36

11 ,5

PL tip.4

17,95 38 ,37 55

96,5

0,76 x 5 = 3,78 m2

43

34

0,56 x 2 = 1,12 m2

2 150 X 150

= 16,0 m2

2 150 X 100

= 25,2 m2

2 100 X 100

= 5,6 m2

17

16

15

80

32

10

30

30

10

PL tip 3

PL tip.2

37,5

0,376 x 2 = 0,752 m2

Fig-3.5. Cubicación Viga Reticulada. Constructora Ingesur. 

 

  12   

PLATAFORMA TIPO 1= 45,75 m2 (2 unid. total. 91,5 m2) 1180 1140 80

90

80

50

49,58

50

VIGA RETICULADA TIPO 1 80

80

PL tip 3

PL tip 2

PL tip 1

PL tip 1

PL tip 1

30

60

60

90

90

80

1,47 x 2= 2,94 m2

1,28 x 4= 5,12 m2

2

0X 15

0,54 x 2= 1,08 m2

PL tip 5 80

11

102

11

32

15 0

PL tip 4

0 15

32

1,3 40

13 ,7

15 0X

47

306

2

55

96,5

100

0,76 x 2= 1,52 m2

12

1,2 x 2= 2,4 m2

VIGA RETICULADA TIPO 1 2

PL tip 4

15 0

X

0,6 17

15 0

PL tip 4

2 150 X 150

= 27,68 m2

2 100 X 100

= 5,01 m2

306

PL tip 3

1,4 18

2

15 0

X

15 0

VIGA RETICULADA TIPO 1

PL tip 2

PL tip 2 2

8 35

308

9,7 39

15 0

X

15 0

PL tip 5 VIGA RETICULADA TIPO 1 10 0 X

PL tip 1

10 0

0X 10 0 10

2

PL tip 1

2

2

0X 15

0 15

1180

Fig-3.6.Cubicación Plataforma tipo 1.Constructora Ingesur.

  PLATAFORMA TIPO 2 = 40,74 m2 ( 21 unid: 855,54 m2) 1180 1140

PL tip 3 PL tip 4

PL tip 4

PL tip 2

80

80

50

49,58

50

80

30

90

80

1,28 x 4= 5,12 m2

1,47 x 2= 2,94 m2

PL tip 4 13 ,7

PL tip 3 90

47

102

60

90

100

12

0,54 x 2= 1,08 m2

1,2 x 2= 2,4 m2

PL tip 5 11

80

11

96,5

0,76 x 2= 1,52 m2

VIGA RETICULADA TIPO 1

PL tip 2

300

PL tip 2

VIGA RETICULADA TIPO 1

2

0 15 0X 15

PL tip 1

PL tip 1 1180

Fig-3.7. Cubicación Plataforma Tipo 2.Constructora Ingesur. 

 

55

60

32

MODULO RETICULADO ORIENTE

VIGA RETICULADA TIPO 1

PL tip 2

PL tip 1

80

32

300

300

VIGA RETICULADA TIPO 1

MODULO RETICULADO PONIENTE

PL tip 1

PL tip 1

  13   

BARANDAS DE ACCESO EN PUENTE 22,94 m2 79 Perfil 100 X 100 (Pilar)

Perfil 20X 30

0,88

Perfil 100 X 100 (Pilar)

Perfil 100 X 50 (Baranda)

TORRE

N.T

Contenido cantidad

472

DESCRIPCION

pintura

Perfil 100 X 50 x 829 cm.

1

1,7 m2

Perfil 100 X 100 x 83 cm.

6

0,05 m2

Perfil 20 X 30 x 68 cm.

28

2,284 m2

Perfil 100 X 50 x 829 cm.

1

1,7 m2

total

5,734 m2 x 4 (unid.)= 22,94 m2

170

Fig-3.8. Cubicación Barandas Acceso Puente. Constructora Ingesur

BARANDAS ORIENTES Y PONIENTES=280,416 m2 2,98

Perfil 50 X 50 (Pilar)

Perfil 50 X 50 (Pilar)

0,99

Perfil 50 X 50 (Pilar)

Perfil 100 X 50 (Baranda)

N.T

Contenido cantidad

DESCRIPCION

pintura

Perfil 100 X 50 x 298 cm. Perfil 50 X 50 x 94 cm.

1 3

0,894 m2 1,116 m2

Angulo 20 X 20 x 20,96 mt.

1

0,022 m2

total

2,032 m2 x 138 (unid.)= 280,416 m2

Fig-3.9. Cubicación Barandas Orientes y Ponientes. Constructora Ingesur.

  14   

0,99 0,50

Perfil 20X 30

0,50

BARANDAS TIPODOS ( EXTREMOS) =2,46 m2

N.T

Contenido cantidad

DESCRIPCION

pintura

Perfil 100 X 50 x 100 cm.

1

0,3 m2

Perfil 20 X 30 x 79 cm.

5 1

0,0142 m2 0,3 m2

Perfil 100 X 50 x 100 cm. total

0,6142 m2 x 4 (unid.)= 2,456 m2

Fig-3.10. Cubicacion Barandas Tipo 2 (Extremos). Constructora Ingesur.

 

  15   

3.2 -Tabla con Valores de la Cubicación: Detalle

Unidad

Superficie en m2

TORRES Y TRAVESAÑOS MODULO TIPO 1 ORIENTE Y PONIENTE MODULO TIPO 2 ORIENTE Y PONIENTE PLATAFORMA TIPO 1 PLATAFORMA TIPO 2

2 4 42 2 21

1.155,54 574,32 6.384,42 91,5 855,54

BARANDAS DE ACCESO EN PUENTE VIGA RETICULADA TIPO BARANDAS ORIENTES Y PONIENTES BARANDAS TIPO DOS ( EXTREMOS)

1 70 1 1

22,94 3.731 280,416 2,46

Tabla 3.1 valores de cubicación. constructora Ingesur.

3.3- Tabla de Costos:

paridas Remoción de barreras metalicas de seguridad

Unidad

Cantidad obra

m

420

Precios unitarios

total

5,311

2.230.620

15,828

204.181.200

Limpieza elementos metálicos, arenado comercial

m2

Limpieza elementos metálicos, manualmecánica, cables y péndolas

m2

1,100.

12,731

14.004.100

Limpieza elementos de hormigón en macizos de anclaje

m2

520

3,365

1.749.800

Pintura elementos metálicos, Sistema Tipo I

m2

200

18,302

3.660.400

Pintura elementos metálicos, Sistema Tipo II Reposición empotramiento elástico de cables principales

m2

14,000

19,873

278.222.000

Dm3

536

19,942

10.688.912

Perfil de defensa caminera galvanizada simple de doble onda

m

420

92,146

38.701.320

Hormigón H-30

m3

280

208,810

58.466.800

Demolición de pavimentos de hormigón

m2

1,400

14,438

20.213.200

Subbase granular CBR>50

m3

700

26,817

18.771.900

12,900

  16   

Tabla 3.2. Costos. Constructora Ingesur.

Item

Descripción

U.

Cantidad

Precio unitario

Total



Poste de 10m , un gancho 

c/u 



$ 403,846 

$ 2,423,075 



Poste de 10m empotrados 

c/u 



$ 504,026 

$ 2,016,103 



Tablero Eléctrico TGA 

c/u 



$ 1,437,308 

$ 1,437,308 



Cañería conduit PVC 



120 

$ 11,797 

$ 1,415,694 



Cañería Ac. Galvanizado 



2300 

$ 1,756 

$ 4,039,376 



Camara tipo C 

c/u 



$ 49,177 

$ 196,707 



Luminaria Sodio 150 W 

c/u 



$ 228,000 

$ 1,368,000 



Manguera led 7,5 W/m  100m 

c/u 



$ 1,463,000 

$ 5,852,000 



Proyecto de areas HM150W 

c/u 



$ 343,900 

$ 1,375.600 

9.1 

Proyecto de areas HM150W 

c/u 



$ 343,900 

$ 2,751,200 

10 

Proyecto de areas HM250W 

c/u 



$ 361,000 

$ 1,444,000 

11 

Cable n°12 AWG ‐ XLPE 



4166 

$ 368 

$ 1,531,005 

12 

Cable nº 12 AWG – THHN 



300 

$ 380 

$ 114,000 

13 

Terminales de compresión 

c/u 

52 

$ 1,615 

$ 83,980 

14 

Barra C/W 3/4" x 1,5 m. Con  conector. 

c/u 



$ 16,150 

$ 64,600 

15 

Transporte y montaje postes 

dia 



$ 190,000 

$ 760,000 

 

 

 

 

 

 

 

$ 26,872,648 

 

TOTAL NETO INSTALACIONES ELECTRICAS 

Tabla 3.3.Costos Eléctricos. Constructora Ingesur.

  17   

Instalación de Faenas 4.1-Instalación de Faenas: Antes de comenzar la remodelación y conservación de Puente Presidente Ibáñez, se desarrolló

una instalación de faena a un costado del puente (Fig-4.1). que estaba

compuesta por Conteiner, los cuales fueron utilizados como oficinas y bodegas. Actualmente se utiliza mucho el contenedor para estas secciones, ya que son más prácticos de movilizar y tienen mayor durabilidad. Además la instalación constó de baños químicos y garitas de cuidador.

Fig-4.1. Instalación de faenas. Constructora Ingesur.

El área de Instalación de Faenas fue utilizado como zona de almacenamiento de los equipos y Maquinarias que no se utilizaban en terreno o que eran almacenado diariamente al final de cada jornada, como los compresores y grúas. Se realizaron las instalaciones adecuadas para el sistema eléctrico e iluminación del sector de faena, para brindar mayor visualización para la persona que se encontraría como nochero. Se realizaron las instalaciones de agua potable y servicios sanitarios provisorios.

  18   

Ya finalizados los trabajos de instalación de faenas, se procedió con los trabajos en el puente. 4.2-Programa de Trabajo: Para realizar los cortes en la vía se programaron reuniones de participación ciudadana por parte de la Dirección de Vialidad. El Puente Presidente Ibáñez no podía permanecer cortado en su totalidad, ya que es la única vía de conexión que existe en la comuna de Puerto Aysén para automóviles y peatones (Fig-4.2.) Por lo cual se procedió al corte definitivo del puente de una vía las 24 horas.

Fig-4.2. Flujo vehicular y peatonal.www.google.cl/imágenes

Se iniciaron trabajos en el Puente Presidente Ibáñez (Fig-4.3.).con cortes de una vía, los cuales son ejecutados mediante:

• Conos reflectantes. • Señalizaciones con letreros en sector norte y sur. • La instalación de garitas para paleteros en el sector norte y sur del Puente Presidente Ibáñez los cuales debían permanecer las 24 horas con sus respectivos turnos.

  19   

• La instalación de paneles para ejecutar el proceso de arenado. • La instalación de una plataforma, la cual recorría la parte inferior de Puente Presidente Ibáñez.

Fig-4.3. Instalación de faenas en puente Presidente Ibáñez. Constructora Ingesur.

Se realizo la instalación de maquinarias en el Puente Presidente Ibáñez para comenzar con el proceso de arenado específicamente, comenzando de norte a sur. Ya instalados los paneles de protección se comenzó con el proceso sin cortar permanentemente el flujo vehicular ni peatonal. El tiempo que se tardaban en cruzar de un sector a otro era de 15 minutos aproximados, ya que existía una sola vía. Al mismo tiempo se procedió a extraer las barreras camineras del sector de trabajo. Al momento de tener arenado una cantidad de superficie se comenzaba a sopetear y seguido de eso se le aplicaba una capa de pintura anticorrosiva. Para los días no lluviosos se aprovechaba al máximo para el proceso de arenados y de pintura recordando que la región de Aysén es la que presenta mayores precipitaciones en el país. al momento de terminar la reparación de los hormigones de la vía dañados, se procedió a dejar después de la jornada de trabajo las dos vías habilitadas dando un mejor y mas rápido flujo vehicular.

  20   

Limpieza y Pinturas Aplicada en la Estructura Metálica

5.1-Limpieza Estructura Metálica:

Uno de los primeros trabajos realizados en el Puente Presidente Ibáñez consistió en limpiar

toda la estructura metálica de cualquier tipo de corrosión, sarro y de las

pinturas de mal estado para lo cual se utilizaron 2 métodos. •

Arenado tipo comercial.



Limpieza de forma manual.

5.2- Descripción del Método de Limpieza Utilizado

El Arenado consiste en un impacto de arena a alta velocidad contra una superficie que se desea tratar (Fig-5.1). Suele ser utilizado para la eliminación de óxidos, pinturas en mal estado o cualquier tipo de corrosión. También como acabado superficial de revestimientos. El arenado se realiza mediante la proyección de arena por medio de aire a presión.

La arena es un silicato de muy bajo costo y fácil obtención, aunque sus granos al golpear la superficie tratada, se parten formando un fino y penetrante polvo. Al cabo de una o dos proyecciones, la arena en uso, debe ser reemplazada porque adopta la característica de talco o polvo.

Es indispensable que la arena a utilizar, esté bien seca para que fluya muy bien en la tolva de “gravedad”, que normalmente se utiliza para expulsarla hacia la tobera, caso contrario se obturarán las líneas y se demorará la tarea.

  21   

Como la granulometría, la presión del aire suministrado y el pico de la tobera de salida nos definen la profundidad o tamaño de los orificios que producirá la arena en su impacto contra la superficie, y que puede llegar en algunos casos hasta 3,5 milésimas de milímetro; será importante definir previamente el tamaño de los granos constitutivos de la arena a emplear.

Fig-5.1. Imagen donde se visualiza el proceso de arenado en uno de los macizos de anclaje. Constructora Ingesur.

5.3-Tipos de Arenado:

Existen cuatro tipos de arenados los cuales son: •

Metal Blanco: Todo el óxido visible, restos de pintura y partículas extrañas son removidos de la superficie.



Próximo al Blanco: El 95% del área tratada estará limpia y sin vestigios de óxidos o impurezas.

  22   



Calidad Comercial: 2/3 De la superficie tratada estará libre de restos de óxidos o impurezas.



Barrido: La superficie de base tiene una apariencia donde permanecen adheridos fuertemente escamas o cascarillas de laminación, óxido, o vestigios de pintura eventualmente distribuídos en zonas o parches como manchas translúcidas o de distinta tonalidad.

El tipo de arenado ejecutado en el Puente Presidente Ibáñez fue de calidad comercial, donde fue utilizado arena con característica cuarzosa con granulometría entre mallas 16 y 40.

5.4-Maquinas y Herramientas utilizadas en el arenado.

Para el proceso de arenado se utilizaron: •

Una tolva o también conocida como columna para la arena (Fig-5.2), el cual era el depósito de arena que se encontraba con el proceso de secado y con la granulometría correspondiente lista, donde por gravedad y arrastre de aspiración por efecto Venturi, la arena se desplaza hasta la tobera.

  23   

Fig-5.2. Tolva o columna para arena.www.google.cl/imágenes



Mangueras para alta presión y adecuada longitud para facilitar la tarea desde la posición mas alejada del compresor (Fig-5.3.), además se utilizaron picos de toberas de distintos tamaños para proyectar la arena, los cuales son de materias cerámico o de aleaciones de muy alta resistencia para resistir la abrasión que el paso de la arena le produce a las toberas (Fig-5.4.).

Fig-5.3. Mangueras alta presión. www.google.cl/ imágenes.



Fig-5.4. picos de toberas. www.google.cl/imagenes.

Otros de los equipos más importantes fueron los motocompresores de aire, los cuales tenían que ser de gran capacidad o volumen de reposición y alta presión ( 8 o 10 Kgs/cm2 aproximado). Estos fueron utilizados para el proceso de arenado y pintura (Fig-5.6 y Fig-5.7.).

Fig-5.6 Motocompresores. www.google.cl/imagenes.

Fig-5.7.motocompresores ubicados en el Puente Presidente Ibáñez. Constructora Ingesur.

  24   



Elementos de protección personal (Fig-5.8.) como casco de protección presurizado con suministro de aire filtrado y presión siempre positiva en su interior para evitar la inhalación por parte del operador del polvo de arena que puede dañar los pulmones. Ropa de trabajo con protección adecuada. La arena proyectada a presión puede provocar heridas en la piel fácilmente.

Fig-5.8. Elementos de protección personal.www.google.cl/imágenes.



Se diseñaron pantallas (Fig-5.9.) y carpas (Fig-5.10) de protección para sectorizar la zona de trabajo y evitar la disipación en el área del polvo de arena residual. Ya que en el Puente Presidente Ibáñez había constantemente flujo vehicular y peatonal.

  25   

Fig-5.9. Imagen donde se visualizan las pantallas de Protección. Constructora Ingesur.

Fig-5.10. imagen donde se visualiza carpa de Protección. Constructora Ingesur.



Se dispuso de una grúa (Fig-5.11.) la cual poseía una plataforma individual, para la persona que estaba realizando los trabajos de arenado y pintado, para alcanzar los sectores mas altos del Puente Presidente Ibáñez como son las torres de 25 mts.

Fig-5.11. Imagen de la grúa utilizada para alcanzar los sectores mas Altos del puente presidente Ibáñez. Constructora Ingesur.

Normalmente el proceso del arenado se

realiza

con tres operarios, uno de los

operarios se encarga de la parte del arenado, otro es el que abastece de arena a la tolva y un tercero para alternar su turno en el arenado y atención del compresor.

5.5- Limpieza de Forma Manual:

  26   

El segundo método utilizado para la limpieza de la estructura metálica del Puente Presidente Ibáñez, fue el que se ejecutó para la limpieza de péndolas y los cables de acero, lo cual se desarrolló de forma manual. La limpieza de las péndolas fue desarrollada mediante un esmeril angular también conocida como galletera, la cual poseía un accesorio denominado “chascón” (Fig-5.12.).

Fig-5.12. Imagen donde se visualiza limpieza por medio de un esmeril angular. Constructora Ingesur.

La limpieza de los cables de aceros y los interiores de las torres de acceso se realizaron mediante hidrolavadoras; ya que no se podían ser arenadas porque eran lugares muy estrechos y además, podría ser muy riesgoso para la persona q esta desarrollando esta labor. Esta hidrolavadora se encontraba conectada con un estanque donde se encontraba ña mezcla del desengrasante de acero para superficies metálicas.

  27   

(Fig-5.13) Imagen proceso hidrolavadora. Constructora Ingesur.

5.6- Pinturas: Ya en el proceso de pintado anticorrosivo se debieron limpiar las superficies arenadas como así también sopletear con aire a presión limpio y seco en toda la sección donde se requería pintar , asegurando así la total remoción del polvo existente producto del proceso realizado anteriormente. Las pinturas fueron aplicadas sólo sobre superficies totalmente secas y mientras se cumplan las siguientes condiciones:



Temperatura ambiente

: mínimo 10.0 ºC, máximo 37.8 ºC.



Temperatura de superficie

: Mínimo 4..0 ºC, máximo 37.8 ºC.



Humedad ambiente

: 85% de HR máxima.

Además, las pinturas no debían

aplicarse cuando las superficies de pintura fresca

puedan ser dañadas por lluvia, niebla o polvo.

  28   

Las superficies que se encuentren lo suficientemente calientes, no pueden ser pintadas, ya que se puede producir

ampollamiento, una película porosa o que separe los

pigmentos de la pintura.

Las pinturas fueron aplicadas mediante pistola o brocha, o también una combinación de ambos sistemas, si la pintura aplicada así lo requería.

Las cerdas de las brochas debían tener suficiente cuerpo y longitud para extender la pintura en una película uniforme.

Previo a la aplicación de las pinturas, debían ser mezcladas en mezcladores mecánicos el tiempo suficiente para que los pigmentos y el solvente utilizado se unan totalmente. Ya que los componentes de la pintura deben permanecer unidos durante el proceso de aplicación. En los trabajos de pinturas se utilizó pintura anticorrosiva y pintura de terminación.

5.7- Pintura Anticorrosiva:

En toda la estructura previamente limpia de acuerdo al instructivo

“Limpieza de

elementos metálicos”, se aplicaron dos manos de revestimiento epóxico auto imprimante con 82% de sólidos, con un espesor total de la película seca de micrones (Fig-5.14.).

125

  29   

Fig-5.14 Imagen donde se aprecia la pintura anticorrosiva. Constructora Ingesur.

5.8- Pintura de Terminación: Ya con la pintura anticorrosiva aplicada se comenzaron los trabajos de la pintura de terminación. Lo cual sobre el imprimante anticorrosivo se aplicaron dos manos de pintura Poliuretano poliéster con 65% de sólidos en volumen (Fig-5.15.y Fig-5.16). El poliuretano poliéster es un producto de secado rápido, alto brillo y con una retención de color y brillo a la exposición de la luz ultra violeta o exteriores. La pintura de poliuretano poliéster puede ser directamente utilizada sobre anticorrosivo epoxy o inorgánico de zing. A la pintura de terminación se le dió un espesor de la película seca de 75 micrones en total.

  30   

Fig-5.15) Pintura de terminación aplicada en una de las Torres Constructora Ingesur

Fig-5.16. Pintura aplicada en la ……. Constructora Ingesur

5.9-Instrumentos Utilizados para Medir Espesores:

En el trabajo de pinturas húmedas se realizaban chequeos a los espesores, mediante una herramienta llamada “peines medidor" las que eran utilizadas por los pintores especializados. La medición del espesor de la capa de pintura recién aplicada en estado húmedo es muy importante. Por un lado, el espesor de la capa influye en la calidad de un producto; por otro lado, el empleo de cantidades demasiado grandes de material puede resultar muy caro. El peine medidor tiene la forma de una regla hexagonal (Fig-5.17.) con dos patas en cada una de sus seis aristas y muescas de diferentes profundidades.

  31   

El peine o peineta para la medición de espesores de recubrimientos húmedos tiene rango de espesores que cubre 25 a 3.200 micrones.

Fig-5.17. Peine para medir espesores. www.google.cl/imágenes

Otro

de los instrumentos utilizados es el elcometer (Fig-5.18.)

espesores con mayor precisión

el cual medía los

cuando ya se encontraba el proceso de pintado

realizado, Una vez verificados los espesores de la estructura eran   todos los datos ingresados en los informes diarios. Existe varios modelos de medidores de espesores y de muy fácil manejo, los cuales pueden ser aplicados sobre superficies magnéticas, tales como pintura, zincado, cromado u otras aplicaciones sobre estanques, ductos, estructuras, cañerías, etc. pueden llegar a medir entre 0 y 1000 micrones.

Fig-5.18. imagen de un elcometer.www.google.cl/imagenes

  32   

5.10- Plataforma:

Dentro del trabajo de arenado y pintado realizados en el Puente Presidente Ibáñez, se dispuso una plataforma con la finalidad de recepcionar parte de las partículas caídas del proceso de arenado y disponerlos en un lugar final, y evitar así que estos caigan al lecho del río Aysén ya que las partículas después del proceso descendían contaminadas con restos de pintura, lo cual era tóxico.

Además se fabricó la plataforma para el desplazamiento de los trabajadores los cuales se apoyaban sobre esta; para arenar y pintar las vigas reticuladas que se encuentran en la parte inferior del Puente, con un total de 70 vigas reticuladas (Fig-5.19). La estructura de esta plataforma fue metálica con dimensiones de 3.6 mts ancho por 12.2 mts de largo, en la estructura del Puente Presidente Ibáñez se instalaron de forma provisoria unos rieles de tren, ya que la plataforma en la parte superior poseía las ruedas de tren, lo cual hacía un trabajo más liviano al momento de mover la plataforma (Fig-5.20).

La plataforma se movía de forma manual, se le hacia una especie de palanca por ambos lados, y posteriormente ya cuando se encontraba en el lugar indicado se procedía asegurar con amarras a la misma estructura del Puente.

CARGAS CONSIDERADAS EN EL ANALISIS Ancho (m) Largo (m)

1 Peso Propio (estimado) 2 Peso Muerto 3 Sobrecarga de uso (kg/m2) Peso Total

3.6 12.2 Kg 2180 1317 10980

cargas Kg/mt² 50 30 250

14477

330

  33   

Tabla.5.1.cargas de análisis plataforma. Constructora Ingesur

5.11 - Imágenes de la plataforma:

Fig-5.19. Imagen de la plataforma parte inferior del Puente Presidente Ibáñez. Constructora Ingesur

Fig-5.20. Imagen plataforma de uno de los costados del Puente Presidente Ibáñez. Constructora Ingesur.

  34   

Demolición y Reposición de Hormigones En el

Puente Presidente Ibáñez además se realizaron trabajos de demoliciones y

reposiciones de hormigones de la vía en los extremos del sector norte y sur, ya que con el tiempo presentaron desniveles y fisuras 6.1- Demolición de Hormigones: Se comenzaron con los trabajos de demolición en el sector sur del Puente Presidente Ibáñez en una de las vías, con una máquina excavadora tipo orugas (Fig-6.1.y Fig-6.2), la cual era la encargada de demoler y cargar el escombro de hormigones a los camiones tolvas; los cuales procedían a llevarlos a botadero.

  35   

La cantidad de material excedente a botadero es de 680 m3

Fig-6.1.demolición de hormigón existente por excavadora tipo oruga. Constructora Ingesur .

Fig.6.2. Hormigón existente ya demolido. Constructora Ingesur

Un mejoramiento a las condiciones del suelo con un material estabilizado (fig-6.3) el cual fue desparramado por una moto niveladora y posteriormente compactado por un rodillo tipo mono cilíndrico (Fig-6.4); esto como base para el pavimentación de hormigones.

Fig-6.3 Mejoramiento con material estabilizado. Constructora Ingesur.

Fig-6.4. Compactación por rodillo Monocilindrico. Constructora Ingesur

  36   

Una vez terminado el trabajo de compactación se procedió a demoler la otra vía realizando los mismos trabajos y además habilitando la vía compactada para el paso vehicular, ya que el Puente Presidente Ibáñez no podía permanecer cortado en un 100% por el flujo de automóviles y peatones que transitan por éste diariamente . Posteriormente se procedió a la nivelación, donde se realizaron los siguientes pasos: •

estacado a nivel de sub-base.



corte y relleno de plataforma a nivel de sub-base.



Colocación de moldes.

La topografía se ejecutó durante el mes de Septiembre y octubre del año 2008, dejando demarcado en terreno los puntos de referencias (PR) en distintos sectores del entorno del Puente Presidente Ibáñez. Posterior a ello, se hizo entrega de un plano de planta del sector del puente, incluyéndose por norte y sur sobre los 200 mt. pasados la junta de dilatación del puente Además, este trabajo incluye los perfiles transversales y longitudinales y cubicación de elementos que componen la reposición del pavimento. La cubicación de los áridos y hormigón corresponde a (Tab-6.1. y Tab-6.2.): 6.2- Planillas de nivelación sector norte y sur:

AREA

DISTANCIA

VOLUMEN

Dm

0,000

EN

PAVIMENTO

BASE

SUB-BASE

PAVIMENTO

BASE

SUB-BASE

(M)













10,000

0,050

0,050

0,050

0,170

0,170

0,170

  37   

10,000

10,000

1,280

1,200

2,000

6,650

6,250

10,250

20,000

10,000

1,280

1,200

2,000

12,800

12,000

20,000

30,000

10,000

1,280

1,200

2,000

12,800

12,000

20,000

40,000

10,000

1,280

1,200

2,000

12,800

12,000

20,000

50,000

10,000

1,280

1,200

2,000

12,800

12,000

20,000

60,000

10,000

1,280

1,200

2,000

12,800

12,000

20,000

70,000

10,000

1,280

1,200

2,000

12,800

12,000

20,000

80,000

10,000

1,280

1,200

2,000

12,800

12,000

20,000

90,000

10,000

1,280

1,200

2,000

12,800

12,000

20,000

100,000

10,000

1,280

1,200

2,000

12,800

12,000

20,000

110,000

10,000

1,620

1,520

2,530

14,500

13,600

22,650

120,000

10,000

1,760

1,650

2,760

16,900

15,850

26,450

130,000

10,000

1,790

1,680

2,770

17,750

16,650

27,650

140,000

10,000

2,000

1,880

3,140

18,950

17,800

29,550

150,000

10,000

2,490

2,330

3,880

22,450

21,050

35,100

160,000

10,000

1,800

1,690

2,800

21,450

20,100

33,400

170,000

10,000

2,520

2,360

3,940

21,600

20,250

33,700

26,83

25,16

41,87

255,62

239,72

398,92

TOTAL

Tabla-6.1- planilla de Sector Ribera Norte Puerto Aysén. Constructora Ingesur.

DISTANCIA Dm

AREA

VOLUMEN

EN

PAVIMENTO

BASE

SUBBASE

PAVIMENTO

BASE

SUB-BASE

M













0,000

10,000

0,050

0,050

0,050

0,170

0,170

0,170

10,000

10,000

1,280

1,200

2,000

6,650

6,250

10,250

20,000

10,000

1,280

1,200

2,000

12,800

12,000

20,000

  38   

30,000

10,000

1,280

1,200

2,000

12,800

12,000

20,000

40,000

10,000

1,280

1,200

2,000

12,800

12,000

20,000

50,000

10,000

1,280

1,200

2,000

12,800

12,000

20,000

60,000

10,000

1,280

1,200

2,000

12,800

12,000

20,000

70,000

10,000

1,280

1,200

2,000

12,800

12,000

20,000

80,000

10,000

1,280

1,200

2,000

12,800

12,000

20,000

90,000

10,000

1,280

1,200

2,000

12,800

12,000

20,000

100,000

10,000

1,280

1,200

2,000

12,800

12,000

20,000

110,000

10,000

1,280

1,200

2,000

12,800

12,000

20,000

120,000

10,000

1,280

1,200

2,000

12,800

12,000

20,000

130,000

10,000

1,280

1,200

2,000

12,800

12,000

20,000

140,000

10,000

1,280

1,200

2,000

12,800

12,000

20,000

150,000

10,000

1,280

1,200

2,000

12,800

12,000

20,000

160,000

10,000

1,280

1,200

2,000

12,800

12,000

20,000

170,000

10,000

1,280

1,200

2,000

12,800

12,000

20,000

21,81

20,45

34,05

211,62

198,42

330,42

TOTAL

Tabla-6.2. Planilla de Sector Ribera Sur Puerto Aysén. Constructora Ingesur.

  39   

Una vez ya realizadas las nivelaciones y colocación de moldes (Fig-6.5.), se procedió a hormigonar la vía preparada. Se realizó un acopio de áridos en el sector sur del Puente Presidente Ibáñez para luego proceder con la fabricación del hormigón mediante autohormigoneras. 6.3- Áridos: Los

áridos son materiales granulares (pequeños trozos de roca) utilizados en la

construcción (edificación y obras públicas) y en diversas aplicaciones industriales. Los áridos utilizados en la fabricación del hormigón fueron: • Arena: Es un conjunto de partículas de rocas disgregadas, cuyo tamaño varía entre 0,063 y 2 mm. • Grava: Se denomina grava a las rocas de tamaño comprendido entre 2 y 64 mm. • Gravilla: Producto de la trituración de una roca cuyos elementos tienen un grosor máximo de 25 mm. Además, se utilizó un contenedor donde se almacenaban los sacos de cemento. El hormigón utilizado fue un H-30 con un espesor de 20 cm de acuerdo a los moldes.

  40   

Fig-6.5. Cancha terminada para el vaciado de hormigón. Constructora Ingesur.

6.4- Autohormigoneras: El hormigón fue realizado por máquinas autohormigoneras, estas son máquinas que ejecutan el trabajo por ellas mismas, la cual con 1 operador y 2 ayudantes los cuales son los que vacían las bolsas de cemento, se puede realizar las mezclas de hormigón. Existen hormigoneras de 2 a 3.5 cubos de mezcla. El tiempo que se demora para realizar la mezcla va entre los 20 a 30 minutos dependiendo de los conocimientos del operador (Fig-6.6). Una vez preparada las mezclas de hormigón se procedió al vaciado en los moldes (Fig6.7).

Fig-6.6. Imagen Autohormigoneras. Constructora Ingesur

Fig-6.7. Imagen vaciado hormigón. Constructora Ingesur.

  41   

Modificación Barreras Camineras y Reposición Empotramiento Elástico de Cables Principales También se realizó en el Puente Presidente Ibáñez lo que fue la modificación de las barreras camineras,

ya que estas se encontraban dañadas producto

del tiempo

quefueron instaladas y por deformaciones producto de golpes por camiones de gran envergadura y automóviles. 7.1- ¿Que son las Barreras Camineras? Las barreras camineras son un sistema de seguridad de las carreteras y autopistas mediante la reducción de la gravedad de los accidentes, por lo cual, para lograr ese objetivo, estos sistemas se diseñan de manera que: •

Eviten la penetración de los vehículos sin control.



Las medianeras evitan que los vehículos crucen la franja divisoria entre canales opuestos de una autopista y ocasionen colisiones frontales.



Las defensas camineras laterales reducen la gravedad de los accidentes al impedir que los vehículos entren a zonas peligrosas y donde puedan causar grandes daños a propiedades y a personas.



Reencaucen los vehículos sin control en dirección paralela al movimiento del tránsito, reduciendo así el peligro para otros vehículos que le sigan o que circulen en canales paralelos.



Minimizan los riesgos para los ocupantes de los vehículos durante un impacto.

  42   

El Puente Presidente Ibáñez constaba de una sola barrera por lado, teniendo un total de 105 barreras, lo cual fue modificado a doble barrera por lado, dando así una mayor seguridad al puente y a los peatones que transiten por este. El Puente Presidente Ibáñez, actualmente cuenta con 210 unidades de

barreras camineras en total de

material galvanizado simple de doble onda (Fig-7.1 y Fig-7.2.). 7.2- Barrera Caminera de Doble Onda:

Fig-7.1. Corte transversal de una barrera caminera tipo doble onda, www.google.cl/imágenes

Fig-7.2 .dimensiones de una barrera doble onda. www.google.cl/imagenes

La barrera caminera del Puente Presidente Ibáñez se encontraba sujeta por medio de un perfil tipo Z, lo cual para colocar la doble barrera caminera, se tuvo que modificar la altura del soporte tipo Z del Puente Presidente Ibáñez.

  43   

La extensión de los perfiles tipo Z correspondía a 0.82 m de fierro galvanizado, quedando así de una altura final de 1.20 m. (Fig-7.3) La unión de los perfiles tipo Z se ejecutó mediante electrodos E6011 y para darle una mejor terminación se utilizaron electrodos E7018.

200

200

1020

820

100

25

7.3- Detalle de Perfil Tipo Z y Barreda de Doble Onda:

Fig‐7.3.detalle de perfil tipo Z y barrera doble onda. Constructora Ingesur.   

Una vez unidos el perfil existente con el perfil de extensión, se procedió a limpiar bien las superficies de las escorias producto de la soldadura para finalmente ser pintados con galvanizado en frío. Este trabajo de pintado fue realizado de forma manual con brochas (Fig-7.4 y Fig-7.5.)

  44   

Fig-7.4. imagen unión perfil Z . Constructora ingesur

Fig-7.5. imagen Doble barrer. Constructora Ingesur

7.4- Reposición Empotramiento Elástico de Cables Principales: Otros de los trabajos realizados en el Puente Presidente Ibáñez fue la renovación del material existente en los extremos de los cables principales. Se saco aproximadamente 50 cm la brea existente (Fig-7.6).

Fig-7.6. Extremo de los Cables Principales Limpios. Constructora Ingesur.

Se le aplicó 40cm de espuma de poliuretano.

  45   

7.5- ¿Qué es la Espuma de Poliuretano?

La espuma de poliuretano es un material plástico poroso formado por una agregación de burbujas (Fig-7.7).

RELLENO SIKAFLEX 11FC e= 5 cm. RELLENO ESPUMA POLIURETANO e= 45cm.

CABLES PRINCIPALES

5 45

MACIZO DE ANCLAJE

N.T

ITEM 501-21 REPOSICION EMPOTRAMIENTO ELÁSTICO CABLES PRINCIPALES

Fig-7.7 detalle junta de dilatación. Constructora Ingesur.

Y a continuación se le aplicó 5 cm de sikaflex 11fc 7.6- Sikaflex 11fc El sikafelx 11fc es un sellante y adhesivo tixotrópico de un componente a base de poliuretano de elasticidad permanente y curado rápido, se utiliza en juntas de dilatación de poco movimiento , en soldaduras para reemplazar la soldadura de estaño, artefactos sanitarios, este sellante puede ser de color gris o blanco. Para aplicar el sicaflex 11fc era necesario utilizar guantes para la protección de la piel y además se debía tener pleno cuidado con los ojos y las vías respiratorias. Al momento de estar sellando es necesario evitar absolutamente, introducir burbujas de aire, lo cual se consigue inclinando la boquilla en cierto ángulo con respecto a la

  46   

superficie de la junta y manteniendo constante a la misma profundidad a la punta de la boquilla. La terminación es realizada mediante una espátula curva o alguna herramienta similar. En la siguiente imagen (Fig-7.8) se muestra el resultado final de la reparación de la parte externa de los extremos de los cables principales.

(Fig-7.8) sikaflex 11fc.Constructora Ingesur.

  47   

INSTALACIÓN ELECTRICA

Otros de los trabajos realizados en el Puente Presidente Ibáñez fue la reparación del sistema eléctrico, el cual no presentaba buen funcionamiento en las iluminarias tanto para las vías como para la estructura en sí, además las canalizaciones de encontraban deterioradas. Por lo tanto se desarrolló la nueva instalación eléctrica. Para la alimentación de los circuitos de iluminación se considerado un empalme trifásico en baja tensión. Se consideró una caja de medidor normalizada independiente de otros tableros, en ella fue incorporado el equipo de medida. Este equipo debía estar homologado por la compañía distribuidora. Además, en la misma caja de medidor se le instalo un protector automático de 3x25 A. Todos los ductos que llegan al tablero de medidor son metálicos galvanizados, con contratuerca exterior y bushing (casquillo) interior. Las perforaciones que se realizaron a la caja de medidor fueron selladas con silicona apta para el uso a la intemperie. Los ductos fueron sellados interiormente en la caja de medidor con espuma de poliuretano ya que éste no produce daños a los conductores o canalizaciones. Se construyo una malla de tierra de acuerdo a la memoria de calculo realizada, la cual fue construída en cable de cobre desnudo #4 AWG, esta malla de tierra fue enterrada a 0,8 m alrededor del empalme y sus dimensiones eran de 5x5 m. Las uniones realizadas se desarrollaron con soldadura autofundente tipo cadweld.

  48   

Además, se dejó una cámara de inspección bajo la caja de medidor, esta camarilla fue enterrada a 20 cm bajo tierra. En la camarilla se dejó un chicote con un terminal de cobre estañado. Durante la construcción y antes de que la malla esté totalmente cubierta, se realizó una medición de la resistencia, lo cual los

resultados determinaran si la malla debe

ampliarse o tratarse químicamente. Adicional al gabinete del equipo de medida sólo se considera la instalación del tablero TGA, que lleva las protecciones y comandos de cada circuito. Se instalo una fotocelda en el mismo poste de empalme, con una canalización en Conduit galvanizado de 1/2" de diámetro y cables tipo THHN # 14 AWG. Además, en el Puente Presidente Ibáñez hubo nuevos sectores de iluminación los cuales se encontraban en el exterior del puente. Por ende se desarrollaron 2 tipos de canalizaciones unas subterráneas y otras a la vista. 8.1- Canalización Subterránea: Para la canalización subterránea se desarrollaron excavaciones en terreno, para dar cabida al tubo Conduit PVC, para ello fue necesario hacer una zanja de 0,50 m. de ancho x 0,7 m. de profundidad. en los cruces de calles se realizaron excavaciones hasta 1 m de profundidad. Para la instalación de los ductos en el Puente Presidente Ibáñez debieron seguir lo siguientes pasos: • Realizar un encamado, con una capa de arena compactada de 50 mm. • Instalar los ductos sobre la capa de arena. Asegurándose de que las uniones queden herméticas.

  49   

• Cubrir los ductos con una capa de material seleccionado, proveniente de la misma • Excavación, con objetos duros no mayores a 1 cm. Compactar el material en capas de 10 a 15 cm. • A través de todo el largo del ducto se debió considerar una protección mecánica de hormigón pobre con un espesor de 10 cm y un ancho de 20 cm. • Completar el relleno con material de la excavación, eliminando los bolones, piedras grandes o material de desecho. Las canalizaciones subterráneas se ejecutaron principalmente en Conduit de PVC, todos los tramos que el quede a la vista deberá ser protegido por un tubo de mayor diámetro que lo cubra. El cambio de ducto de PVC a galvanizado se hará en cajas de derivación galvanizadas estancas, fijadas sólidamente a la estructura de la pasarela o a los postes.

8.2-Canalizaciones a la Vista: Las canalizaciones a la vista se ejecutaron en Conduit galvanizado intermedio, se instaló por el costado de la estructura del puente, lejos del alcance del público y se afianzó con abrazaderas galvanizadas directamente a la estructura. La llegada a las cajas se realizó con contratuerca exterior y boquilla interior realizando las curvas necesarias para que las cajas no realicen esfuerzo mecánico atribuible al ducto. 8.3- Conductores: Los conductores utilizados en todas las canalizaciones subterráneas fue cable con aislamiento tipo XLPE (Polietileno reticulado) , apto para uso subterráneo (Fig-8.1), en

  50   

cambio en tableros se usaron cables tipo THHN (alambre o cable con aislamiento de PVC y cubierta de nylon) (Fig-8.2).

Fig-8.1. cable tipo XLPE. www.google.cl/imagenes

Fig-8.2. Cable tipo THHN www.google.cl/imagenes.

8.4- Postes:

Los postes que se utilizaron fueron de tipo tubular con brazo recto, con una placa de montaje, los postes que se encuentran dentro del puente tienen una altura útil de 10 m estos fueron montados con grúas en sus respectivos soportes. Los postes que se encuentran fuera del Puente Presidente Ibáñez fueron empotrados sobre una superficie de hormigón armado, estos postes tiene un altura útil de 12 m. En la siguiente imagen se mostrara el detalle de los postes (Fig-8.3).

  51   

Fig-8.3. Imagen donde se Detallan los postes.www.google.cl/imágenes

  52   

8.5- Luminarias: Dentro de las luminarias, estas son consideradas aptas para el uso en iluminación vial, cumplen con los requerimientos básicos de iluminación exigidos. Van montadas en un brazo recto y llevan todo el equipo eléctrico incorporado. se realizaron 3 tipos de iluminación: 8.5.a. Luminarias torres de acceso: Comprende el suministro y el montaje de los reflectores de haluro metálico, tipo Proyector Rotacional simétrico de tamaño medio. Posee una carcaza de aluminio inyectado a alta presión, con reflector en su interior de aluminio anodizado y vidrio frontal templado resistente al choque térmico. Construcción para intemperie no requiere limpieza interna. Con hermeticidad de la componente óptica IP66. El equipo eléctrico va incorporado en el interior, cuenta con un ballast de bajas perdidas. La ampolleta es de Haluro Metálico de 150W.

8.5.2-Luminaria de calzada: Comprende el suministro e instalación de luminarias de vapor de sodio de alta presión para iluminar la calzada de circulación del puente. Se trata de luminarias para alumbrado público fabricadas con cuerpo y capó de aluminio inyectado, bloque óptico sellado de hermeticidad IP66, reflector de aluminio de alta pureza embutido, abrillantado y oxidado anódicamente. Capó fijado con bisagra y cerradura de alta resistencia a las inclemencias del clima, permiten un acceso fácil para mantenimiento. Protector de vidrio curvado y templado tipo CUTT-OFF.

  53   

8.5.c- Alumbrado ornamental de catenaria: Se realizó el montaje de una manguera led (Fig-8.4) que ilumine en forma ornamental el borde de la catenaria. Se trata de un equipo apto para ser montado en el exterior con conexión directa a 220 V. La manguera led fue fijada previamente a un alambre de acero galvanizado 4 mm2, el que fue el cable portante, previo a la instalación en la catenaria. La fijación de la manguera led al cable mensajero de 4 mm2 se realizo con amarras plásticas incoloras que resistan los rayos UV, de 7,6 mm de ancho, tipo HEAVY DUTTY de 3M . El distanciamiento de amarras no mayor a 30 cm. Una vez que se encontraba fijo el cable mensajero a la manguera led se procedió a la instalación bajo la catenaria, cuidando siempre de realizar la tracción mecánica sobre el alambre y no sobre la manguera. El cable portante fue fijado en sus extremos con grilletes y guardacabos galvanizados de protección. La fijación del conjunto manguera-alambre a la catenaria se realizó con cinta Bandit de acero inoxidable, sin realizar ninguna perforación a la estructura del puente y se debió asegurar que la manguera led se ubicara a una distancia uniforme bajo la curva.

Fig-8.4.manguera led.www.google.cl/imagenes

  54   

Fig-8.5. Imagen del Puente Presidente Ibáñez con nuevas instalaciones de iluminación. Constructora Ingesur.

Conclusión Una vez terminados los procesos de la remodelación y conservación del Puente Presidente Ibáñez, se puede

apreciar fácilmente un antes y un después de dicho

puente.

Antes

Después

Se puede concluir que gracias a los trabajos realizados en el puente presidente Ibáñez solicitados por el mandante director de vialidad y ejecutado por la empresa constructora INGESUR S.A. mejoro satisfactoriamente la imagen de la estructura dando un estilo más resaltante y más rígido, recordando que este actualmente se considera un monumento nacional y posee gran cantidad de visitantes nacionales y extranjeros. Además el mejoramiento de iluminación brinda una mejor vista y mayor seguridad a los peatones que transiten por este. Prolongando la vida útil del puente, se debería realizar una planificación programada de mantención del Puente Presidente Ibáñez, mas aun siendo la única vía de conexión que existe de la rivera norte y rivera sur de puerto Aysén, comunas de la región como lo son puerto Chacabuco y la ciudad capital de Coyhaique.

Actualmente el Puente Presidente Ibáñez aun no posee una planificación de mantención, lo cual si lo hubiera, bajaría el costo de remodelación y conservación de este.

Bibliografía

Meldic “Instrumentación” Pagina  www.meldic.cl Empresa Constructora INGESUR S.A “Oficina técnica”. Srta. Karen Harvez Cea. Distribuidora HIMAX Limitada “AV. Almirante Simpson Coyhaique. Tecnovial S.A. “defensas camineras “ Pagina  http://www.tecnovial.cl/fichas/defensas.pdf / abril 2008 Sika Pagina www.sika.cl/Folletos/Sikaflex_11_FC.pdf / febrero 2003

 

Get in touch

Social

© Copyright 2013 - 2024 MYDOKUMENT.COM - All rights reserved.