Story Transcript
1
Calcula en la siguiente figura el elemento que falta:
2
Calcula en la siguiente figura el elemento que falta:
3
Calcula el valor de la diagonal de un ortoedro de aristas 3 cm, 4 cm y 5 cm.
4
Comprueba la fórmula de Euler: caras + vértices = aristas + 2, en los siguientes poliedros.
a)
b)
5
Calcula la distancia máxima entre dos puntos de un tronco de cono de bases con radios 5 cm y 2 cm, y generatriz 10 cm.
6
Se tiene un tronco de cono donde el radio de la base mayor mide 5 cm, el radio de la base menor 1 cm y la altura 2 cm. Calcula la altura del cono completo.
8
Calcula el volumen de las siguientes figuras:
a)
b)
9
Dado el siguiente prisma recto de base un rectángulo, calcula:
a) El área de las bases. b) El área de las caras laterales. c) El área de todo el prisma. d) El volumen del prisma.
10 ¿Cuántos litros de agua caben en un depósito como el de la figura?
11 Halla el volumen de la siguiente tuerca hexagonal de lado 2 cm, altura 2 cm, y el cilindro central de diámetro 0,5 cm.
12 Calcula el área del triángulo más grande que se puede construir sobre un ortoedro de aristas 2, 2 y 5m.
13 Indica la longitud de las siguientes coordenadas geográficas: 77 17 N 43 31 O
a)
134 21 S 78 40 E
b)
14 ¿Cuántas horas tienen de diferencia dos personas situadas sobre los puntos de coordenadas 10 17 N 75 45 O 43 43 S 14 31 O y ? 15 Si el radio medio de la Tierra mide 6371 km, ¿cuánto mide el arco de una circunferencia máxima correspondiente a dos grados?
16 Dos ciudades están sobre el ecuador, pero en meridianos separados por 16º. ¿Cuál es la distancia que separa a las ciudades?
17 Un paralelo corta perpendicularmente al eje de la Tierra a 3200 km del polo. Calcula el perímetro del círculo paralelo. (R=6371 km)
18 La antípoda de la ciudad A es B. Sabemos que B está sobre el ecuador. ¿Qué podemos decir sobre donde está A? Calcula la distancia que las separa. (R=6371 km)
SOLUCIONES 1.- Solución: Por el teorema de Pitágoras: 52 22 H2 H 21 4,58
2.- Solución: Por el teorema de Pitágoras: g2 82 62 g 100 10
3.- Solución: La diagonal y las aristas de un ortoedro de aristas a, b, c están relacionadas de la siguiente forma: d a2 b2 c 2
Luego la diagonal mide: d a2 b2 c 2 32 42 52 9 16 25 50 5 2 7,07 cm
4.- Solución: a) Caras: 7 7 10 15 2
Vértices: 10
Aristas: 15
b) Caras: 8 8 12 18 2
Vértices: 12
Aristas: 18
5.- Solución: La distancia máxima es la línea recta que une los puntos A y B de la figura adjunta. La distancia AB es la hipotenusa h de un triángulo rectángulo de catetos H y 2+5=7, primero necesitamos calcular la altura del tronco de cono: 102 32 H2 H 91
Volviendo a aplicar el teorema de Pitágoras; D2 H2 72 D 91 49 140 11,83 cm
6.- Solución:
Vamos a calcular la altura del cono completo por semejanza: 2 x 1 x 4 1 2 La altura del cono completo es 1 9 h 2 x 4 cm 2 2
8.- Solución: V
a) b)
A base h 16 8 128 3 u 3 3 3
V Abase h 9 6 54 u3
9.- Solución: 5 3 15 cm2
a) Área de una base: 2 15 30 cm2
Área de las dos bases: 7 5 35 cm2 b) Área de una cara lateral: 3 7 21cm2 Área de otra cara lateral: 2 21 2 35 112 cm2 Área de las cuatro caras laterales: 112 30 142 cm2 c) Área de todo el prisma: 3 5 7 105 cm3 d) Volumen del prisma:
10.- Solución: Volumen del cilindro: VC R2 H 62 12 1357,17 m3 Volumen de la semiesfera: 1 1 4 2 VE R3 63 452,38 m3 2 2 3 3 Como un metro cúbico tiene 1000 litros, en el depósito caben: 1000 (1357,17 452,38) 1809550l
11.- Solución: Calculamos primero el volumen del prisma hexagonal de lado 2cm. Área del hexágono: 2 3 22 12 h2 h 3 cm A 6 6 3 10,39 cm2 2 Volumen del prisma:
Vprisma A 2 12 3 20,78m3 Volumen del cilindro: 2
0,5 Vcilindro 2 0,39 cm3 8 2
Volumen de la tuerca: V Vprisma Vcilindro 20,78 0,39 20,39 cm3
12.- Solución:
El triángulo equilátero más grande que se puede construir es el marcado en la figura. Luego los lados del triángulo son las diagonales de las caras de l ortoedro. Aplicando el teorema de Pitágoras varias veces: 2
2
l1 l2 22 52 l1 l2 29 m
2
,
l3 22 22 l3 2 2 m
29 m 2 2m El triángulo pedido es un triángulo isósceles de lado igual y lado desigual . Calculamos la altura de este triángulo por medio del teorema de Pitágoras:
2
2
h2
29 h 2
27 3 3 m
El área del triángulo es: 2 2 3 3 AT 3 6 7,35 m2 2
13.- Solución: La longitud es la medida del ángulo que forma el plano del meridiano de Greenwich con el meridiano que pasa por esa coordenada. 43 31 O a) 78 40 E b)
14.- Solución: La Tierra se divide en 24 husos distintos, cada uno con una hora distinta. Los 360º entre 24 da 15º. Cada uso está a 15º de diferencia. 75 45O 14 31 La persona que está a longitud está en el sexto huso, mientras la que está en en el primer huso. Luego tienen 5 horas de diferencia.
15.- Solución: La longitud de la circunferencia máxima es: L 2 r 2 6371 El arco correspondiente a 2º: 2 6371 l 2 222,39 km 360
16.- Solución: La longitud del ecuador es: L 2 r 2 6371 El arco correspondiente a 16º: 2 6371 l 16 1779,12 km 360
17.- Solución:
B=6371-3200=3171 km. Por el teorema de Pitágoras: R 2 A 2 B 2 A 63712 31712 5525,09km
El perímetro es: p 2A 2·5525,09 32264,72km
18.- Solución: Si B está sobre el ecuador, también lo está A por ser la antípoda de B. La distancia que las separa es la mitad del ecuador: 2 r 2 6371 L 20015,09 km 2 2