Story Transcript
Carlos Quesada Dominguez
ANEXO AL LIBRO DE SISTEMA DIEDRICO
1
Carlos Quesada Dominguez
RECTA Y PLANO
Dadas dos rectas (r y s) que se cortan y sus trazas están fuera de los limites del papel. Hallar las trazas del plano que determinan.
1º .- Trazar una recta t cualquiera, t2 en proyección vertical , la cual corta a las r2 y s2 en los puntos 1 y 2. 2º.- Llevar los puntos 1 y 2 a proyección horizontal, y que unidos se obtiene t1 3º.- Trazar otra recta m cualquiera, m2 en proyección vertical, que corte a la anterior t y a su vez a las r y s en los puntos 3 y 4 4º.- Llevar los puntos 3 y 4 a proyección horizontal, y que unidos obtenemos m1 5º.- Hallar las trazas de las rectas t y m. 6º.- Uniendo las trazas verticales de t y m tenemos la traza vertical V del plano pedido. 7º.- Uniendo las trazas horizontales de t y m tenemos la traza horizontal h del plano pedido.
2
Carlos Quesada Dominguez
3
Carlos Quesada Dominguez
INTERSECCIONES
Hallar la intersección de un plano dado por sus trazas, con otro dado por dos rectas, r y s que se cortan. Sin hallar la traza del plano
1º.- Trazar un plano auxiliar . En nuestro caso es un plano paralelo al PH. 2º.- Hallar la intersección de
con , dando la recta t
3º.- Hallar la intersección de con las rectas r y s, dando los puntos 1 y 2, que unidos nos da la racta m. 4º.- t1 y m1 se cortan en el punto P1 5º.- Repetir los pasos 1º a 3º empleando el plano 6º.- n1 y x1 se cortan en el punto Q1. 7º.- Uniendo P1 y Q1 tendremos la proyección horizontal de la recta i de intersección de los planos y pedida 8º.- Llevando a proyección vertical los puntos P y Q y uniendolos, se obtiene la proyección vertical de la recta i de intersección de los dos planos.
4
Carlos Quesada Dominguez
5
Carlos Quesada Dominguez
Hallar la intersección de los planos: -
definido por las rectas r y s que se cortan
-
definido por las rectas t y m paralelas
Sin hallar las trazas de los planos dados.
1º.- Trazar el plano auxiliar (paralelo al PH) que corta a las rectas r, s, t y m en los puntos 1, 2, 3 y 4 respectivamente 2º.- Las proyecciones horizontales de las rectas 1-2 y 3-4 se cortan en el punto A1 3º.- Trazar otro plano auxiliar (paralelo al PH) que corta a las rectas r, s, t y m en los puntos 6, 5, 7 y 8 respectivamente. 4º.- Las proyecciones horizontales de las rectas 5-6 y 7-8 se cortan en el punto B1 5º .- Uniendo A1 con B1 tendremos la proyección de la recta de intersección i1 de los planos y . 6º.- Llevando a proyección vertical los puntos A y B y uniendolos, se obtiene la proyección vertical de la recta i de intersección de los dos planos.
6
Carlos Quesada Dominguez
7
Carlos Quesada Dominguez
Hallar la intersección de los planos: -
definido por su recta r de maxima pendiente
-
definido por las rectas s y t que se cortan
Sin hallar las trazas de los planos dados. 1º.- Trazar el plano auxiliar (paralelo al PH) que corta a la recta r en el punto 1 y a las s y t en los puntos 2 y 3 2º.- Llevar a proyección horizontal los puntos anteriores. 3º.- Por el punto 1, trazar la perpendicular m1 a r1 4º.- Las proyecciones horizontales de las rectas, m y 2-3 se cortan en el punto A1 5º.- Repetir los pasos 1º a 3º empleando el plano 6º.- Las proyecciones horizontales de las rectas n y 5-6 se cortan en el punto B1 7º.- Uniendo los puntos A1 y B1 se tiene la proyección horizontal de la recta i de intersección de los dos planos. 8º.- Llevando a proyección vertical los puntos A y B y uniendolos, se obtiene la proyección vertical de la recta i de intersección de los dos planos.
8
Carlos Quesada Dominguez
9
Carlos Quesada Dominguez
PERPENDICULARIDAD
Trazar por un punto P dado, la recta t perpendicular al plano definido por las rectas r y s que se cortan. Sin hallar las trazas del plano definido por las dos rectas dadas. 1º.- Trazar un plano auxiliar (paralelo al PH) que corta a las proyecciones verticales de las rectas r y s en los puntos 1 y 2. 2º.- Llevar a proyección horizontal los puntos 1 y 2. 3º.- Unir dichos puntos, dando la proyección horizontal de la recta m (horizontal del plano ). 4º.- Trazar por la proyección horizontal del punto P la recta perpendicular a m1 , dando la recta t1 , proyección horizontal de la recta buscada. 5º.- Repetimos el procedimiento con un plano auxiliar (paralelo al PV), dando los puntos 3 y 4 que unidos en proyección vertical obtenemos la proyección vertical de la recta n (frontal del plano ). 6º.- Trazar por la proyección vertical del punto P la recta perpendicular a n2 , dando la recta t2 , proyección vertical de la recta buscada.
10
Carlos Quesada Dominguez
11
Carlos Quesada Dominguez
ABATIMIENTOS
Abatir las rectas r y s que se cortan. Sin hallar las trazas del plano al que pertenecen. Se trata de abatir dichas rectas sobre un plano al PH. 1º.- Trazar un plano
auxiliar paralelo
paralelo al PH que tenga de cota x.
2º Abatimos el punto de intersección I de las dos rectas con respecto al plano Para ello tomamos como charnela la horizontal m1 de cota x, producto de la intersección de con las dos rectas. Y como distancia sobre la paralela a la CH(x) la diferencia de cotas (dc) entre el punto I y el plano horizontal sobre el que vamos a abatir. 3º.- Obtenido I abatido de , obtenemos las rectas r y s abatidas también con respecto a , siendo las trazas de r y s los puntos 2 y 1 respectivamente.
12
Carlos Quesada Dominguez
13
Carlos Quesada Dominguez
Desabatir el punto A perteneciente al plano , sin utilizar la traza vertical abatida de .
1º.- Trazar por (A) la perpendicular a la CH, que es la recta de maxima pendiente (rmp) de . 2.- Realizar el abatimiento de la rmp sobre el plano proyectante vertical que la contiene, dando (rmp). Para ello hemos cogido un punto P p.e de cota 2 perneciente a ella y lo abatimos sobre , dando (P) Uniendo O con (P) tenemos (rmp) 3º.- Con centro en O y radio O-(A) trazamos un arco de circunferencia hasta cortar en (A) a la (rmp). 4º.- Por (A) trazamos la paralela a la CH hasta cortar a la rmp en A1. 5º.- Llevando el punto a proyección vertical se obtiene A2.
14
Carlos Quesada Dominguez
15
Carlos Quesada Dominguez
Desabatir la circunferencia de centro (O) perteneciente al plano , sin utilizar la traza vertical abatida de . 1º.- Desabatimos el centro (O) aplicando el procedimiemto de desabatimiento de un punto sin utilar la traza vertical de , dando O1 y O2 2º .- Trazado del eje mayor de la elipse en proyección horizontal: -Trazar por O1 paralela a la CH y llevar sobre ella y a cada uno de los lados de O1 la distancia R (radio de la circunferencia) en verdadera magnitud, obteniendo el eje A1-B1 3º.- Trazado del eje menor de la elipse en proyección horizontal: -Trazar por (O) la perpendicular a la CH, la cual corta a la circunferencia abatida en (C). - Desabatimos por afinidad y tenemos C1 - Por simetria con respecto al eje mayor, se tiene D1 - Conocidos los dos ejes, se traza la elipse. 4º.- Trazado del eje mayor de la elipse en proyección vertical: -Trazar por O2 paralela a V y llevar sobre ella y a cada uno de los lados de O2 la distancia R (radio de la circunferencia) en verdadera magnitud, obteniendo el eje E2-F2 5º.- Trazado del eje menor de la elipse en proyección vertical: - Trazar por O2 la perpendicular a V y llevar dicha recta a abtimiento, cortando a la cicuferencia abatida en (G) – Desabatiendo por afinidad obtenemos G1 y G2 - Por simetria con respecto al eje mayor, se tiene H2 - Conocidos los dos ejes, se traza la elipse.
16
Carlos Quesada Dominguez
17
Carlos Quesada Dominguez
POLIEDROS REGULARES
DODECAEDRO REGULAR Es un poliedro regular cuyas 12 caras de las que está formado son pentágonos regulares. Tiene 30 aristas y 20 vértices. Los ángulos que lo contiene son: - Ángulo superficial.- 108o - Ángulo diedro.- 116o 33’ 54’’ - Ángulo solido.- 3 x 108o Posee 16 ejes de simetría, pasando 10 de ellos por dos de sus vértices opuestos y los otros 6 por los centros de dos caras opuestas. Sección principal del dodecaedro regular Conocida la arista a. 1º.- Construir un pentagono regular de lado igual a la arista dada (a). 2º .- La altura del pentagono es la altura de cara (hc) del dodecaedro. 3º.- Conocida la arista y la altura de cara construimos la sección principal, compuesta por 2 aristas (a) y 4 alturas de cara (hc). 4º.- en dicha seccion principal se tiene: da.- Distancia entre 2 aristas opuestas. dc.- Distancia entre 2 caras opuestas. dv.- Distancia entre 2 vértices opuestos.
18
Carlos Quesada Dominguez
19
Carlos Quesada Dominguez
Dibujar las proyecciones de un dodecaedro regular de arista (a) conocida y apoyado en el PH por una de sus caras. 1º.- Dibujar el pentagono regular 1-2-3-4-5 el cual es la cara inferior del dodecaedro, es decir la que está apoyada en el PH. 2º Dibujar otro pentagono regular 6-7-8-9-10 concéntrico e igual al anterior pero girado 180o, el cual es la cara superior del dodecaedro. 3º.- Abatimos dos caras tomando como charnela las aristas, p.e. 4-5 y 5-1. 4º.- Por los vértices comunes de los dos pentágonos trazamos perpendiculares a la CH, dandonos el vertice 20. 5º.- Con centro en O y radio O-20 trazamos una circunferencia. 6º.- Prolongando los radios de los pentágonos anteriores, nos cortan a la anterior circunferencia en los puntos 11 a 20, vértices restantes del poliedro. 7º.- Uniendo dichos vértices se obtiene el poliedro en proyección horizontal. 8º.- Para hallar la proyección vertical, basta con calcular las alturas (cotas) h y H que existen entre los vértices del dodecaedro. Para ello se realizan los abatimientos que se indican en la figura.
20
Carlos Quesada Dominguez
21
Carlos Quesada Dominguez
Representar las proyecciones de un dodecaedro regular de arista (a) apoyado en el PH por una de sus aristas, siendo dicha arista perpendicular al PV. 1º.- Construimos la sección principal del dodecaedro a partir de la arista (a) conocida. 2º.- Construida la sección principal se obtiene la distancia (da) entre dos aristas opuestas. 3º.- A partir de a (arista), hc (altura de cara) y d (diagonal de cara) obtenemos la proyección horizontal del poliedro. 4º.- La proyección vertical estará definida por las cotas de sus vértices: - Cota del vértice 1.- Cero - Cota del vértice 1’.- da - Cota del vértice 2.- da/2 - Cota del vértice 3.- a/2 - Cota del vértice 3’.- d + a/2 - Cota del vértice 4.- da/2 – a/2 - Cota del vértice 4’.- da/2 + a/2
22
Carlos Quesada Dominguez
23
Carlos Quesada Dominguez
ICOSAEDRO REGULAR Es un poliedro regular cuyas 20 caras de las que está formado son triángulos equiláteros. Tiene 30 aristas y 12 vértices. Los ángulos que lo contiene son: - Ángulo superficial.- 60o - Ángulo diedro.- 138o 11’ 22’’ - Ángulo solido.- 5 x 60o Posee 16 ejes de simetría, pasando 6 de ellos por dos de sus vértices opuestos y los otros 10 por los centros de dos caras opuestas.
Sección principal del icosaedro regular Conocida la arista a. 1º.- Construir un triangulo equilátero de lado igual a la arista dada (a). 2º .- La altura del triangulo es la altura de cara (hc) del icosaedro. 3º.- Conocida la arista y la altura de cara construimos la sección principal, compuesta por 2 aristas (a) y 4 alturas de cara (hc). 4º.- en dicha seccion principal se tiene: da.- Distancia entre 2 aristas opuestas. dc.- Distancia entre 2 caras opuestas. dv.- Distancia entre 2 vértices opuestos.
24
Carlos Quesada Dominguez
25
Carlos Quesada Dominguez
Dibujar las proyecciones de un icosaedro regular de arista (a) conocida, apoyado en el PH por uno de sus vértices, siendo la diagonal que une dicho vertice con su opuesto, perpendicular al PH.
1º.- Dibujar un pentagono regular 2-3-4-5-6 de lado igual a la arista (a) dada, estando dicho pentagono en un plano paralelo al PH 2º.- Dibujar otro pentagono regular 7-8-9-10-11 concéntrico e igual al anterior pero girado 180o, el cual estará también en otro plano paralelo al PH. 3º.- Uniendo dichos vértices exteriores de los pentágonos obtenemos un decagono regular, que será el contorno aparente en proyección horizontal. 4º.- Para hallar la proyección vertical, basta con calcular las alturas (cotas) h y H que existen entre los vértices del icosaedro. Para ello se realizan los abatimientos que se indican en la figura.
26
Carlos Quesada Dominguez
27
Carlos Quesada Dominguez
Dibujar las proyecciones de un icosaedro regular de arista (a) conocida con una de sus caras (ABC) apoyada en el PH. 1º.- Dibujar el triangulo equilátero A1-B1-C1 en verdadera magnitud, por estar apoyado por dicha cara en el PH. 2º.- Trazar la circunferencia de radio O1-A1 y prolongar las perpendiculares trazadas desde cada vértice del triangulo a sus lados opuestos hasta cortar a la circunferencia anterior en los puntos K1-L1-M1, vértices de la cara superior del icosaedro y contenidos en un plano paralelo al PH. 3º.- Abatir el pentágono regular de lado p.e A1-C1 tomando como CH dicho lado, dando el pentágono A1-(D)-(E)-(F)-C1 4º.- Desabatimos p.e el vértice (D). Para ello trazamos por (D) perpendicular a la CH (A1-C1) hasta cortar a la perpendicular trazada desde O1 al lado A1-B1, dando D1 5º.- Trazar la circunferencia de centro O1 y radio O1-D1 6º.- Prolongando O1-A1 , O1-B1 , O1-C1 , …… hasta cortar a la circunferencia, se tienen los vértices E-F-G-H-I en proyección horizontal. 7º.- Uniendo vértices obtenemos la proyección horizontal del icosaedro regular. 8º.- Para dibujar la proyección vertical se calculan las alturas (cotas) h y H entre los vértices, mediante el abatimiento de los triángulos rectángulos descritos en la figura y cuya hipotenusa es igual a la verdadera magnitud de la arista del poliedro.
28
Carlos Quesada Dominguez
29