dc dc Converter Systems FINAL Year 2023 WMC Flipbook PDF

dc dc Converter Systems FINAL Year 2023 WMC

92 downloads 100 Views 6MB Size

Recommend Stories


DC:
A A CAMP: A PALO SEKO: ABBA: ABIGAIL: AC/DC: AC/DC: AC/DC: AC/DC: ACADEMIA ACADEMIA ACADEMIA ACADEMIA ACADEMIA ACADEMIA ACADEMIA ACADEMIA ACADEMIA ACA

TIG 3080 DC HF MMA 2255 DC
TIG 3080 DC HF MMA 2255 DC 3x TIG 3080 DC HF SALDATRICE TIG TRIFASE AD INVERTER IN CORRENTE CONTINUA CON ALTA FREQUENZA Il generatore trifase (MULT

Story Transcript

T

H

IG

R

PY

C O

© FTA & QTS LLC

1

AU

N

-U TH O

R IZ ED

SE

U

O

PR

H IB IT ED

H IB IT ED O PR SE U R IZ ED TH O AU N T

-U

Low Voltage

C O

PY

R

IG

H

High Voltage

© FTA & QTS LLC

2

H IB IT ED O PR

U

SE

 Replaces the traditional vehicle generator / alternator

R IZ ED

 Converters “convert” the source power (whether it is ac or dc) to a lower or higher output value

TH O

• Two types of converters in the automotive realm:

N

AU

o “Buck” Converter – converts the source power to a lower output value

-U

o “Boost” Converter – converts the source power to a higher output value

R

IG

H

T

• Example: GM 2-Mode (Tahoe/Yukon) system is using a boost function in the dc-dc Converter to charge the high voltage battery pack

C O

PY

o The Electrical Power Law and operating frequency will dictate electrical current output based on the output voltage of the converter © FTA & QTS LLC

3

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

Chevrolet Volt dc-dc Converter

Courtesy: General Motors Co. © FTA & QTS LLC

4

DC Input Capacitors and Inductors to reduce IGBT

Module electrical (EMC) noise by using bus bar in lieu of cables or shortening cables

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

Example: Sine Wave Input Filter

H

T

-U

N

Common Mode Choke shown

C O

PY

R

IG

Courtesy: EPCOS

© FTA & QTS LLC

5

H IB IT ED

Chevrolet Volt dc-dc Converter

HV Input Connection

CAN Connection

AU

TH O

R IZ ED

U

SE

PR

O

12V Chassis Ground Connection

C O

PY

R

IG

H

T

-U

N

+ 12V Output Terminal Connection

Courtesy: General Motors Co. © FTA & QTS LLC

6

Courtesy: Navistar

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

Tandem 4kW dc-dc Converters (8kW total)

© FTA & QTS LLC

7

H IB IT ED O PR SE IG

H

T

-U

N

AU

TH O

R IZ ED

U

Battery Pack to dc-dc Converter Power Connection

PY

R

dc-dc Converter

C O

Power Inverter

dc-dc Converter

Battery Pack

Hybrid Controller © FTA & QTS LLC

8

H IB IT ED

12V Output to Battery + & -

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

HV Battery Connections + & to dc-dc Converter Input

C O

PY

R

IG

dc-dc Converter Air Cooled

© FTA & QTS LLC

9

H IB IT ED

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

Ford Escape Hybrid dc-dc Converter

T

Note: two liquid cooling hoses

IG

H

connected to the dc-dc Converter

C O

PY

R

for cooling

© FTA & QTS LLC

10

T

H

IG

R

PY

C O

© FTA & QTS LLC

11

AU

N

-U TH O

R IZ ED

SE

U

O

PR

H IB IT ED

T

H

IG

R

PY

C O

© FTA & QTS LLC

12

AU

N

-U TH O

R IZ ED

SE

U

O

PR

H IB IT ED

H IB IT ED O PR SE U R IZ ED TH O AU -U

N C O

PY

R

IG

H

T

12 Volt Output Connector

36 Volt Output Connector

APM Input/Output Control Connector

© FTA & QTS LLC

13

H IB IT ED O PR SE U R IZ ED TH O AU N -U H

T

dc-dc Converter Location

C O

PY

R

IG

Mounted on Bottom Side Of Power Inverter Assembly © FTA & QTS LLC

14

T

H

IG

R

PY

C O

© FTA & QTS LLC

15

AU

N

-U TH O

R IZ ED

SE

U

O

PR

H IB IT ED

T

H

IG

R

PY

C O

© FTA & QTS LLC

16

AU

N

-U TH O

R IZ ED

SE

U

O

PR

H IB IT ED

T

H

IG

R

PY

C O

© FTA & QTS LLC

17

AU

N

-U TH O

R IZ ED

SE

U

O

PR

H IB IT ED

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

dc-dc Converter System

© FTA & QTS LLC

18

T

H

IG

R

PY

C O

© FTA & QTS LLC

19

AU

N

-U TH O

R IZ ED

SE

U

O

PR

H IB IT ED

H IB IT ED

dc-dc Converter Switching Hz Benefits of High Switching Frequency

O

1. Smaller converter

PR

• Smaller can be cheaper – up to a certain power output

U

SE

• Beyond that power level small size could be worth some added

R IZ ED

cost

TH O

2. Transient response can improve with higher switching frequency.

N

-U

1. Efficiency is worse

AU

Drawbacks of High Switching Frequency

H

T

 Switching loss is proportional to switching frequency

R

IG

 FET Switch drive power is also proportional to frequency

C O

PY

2. Maximum conversion ratio (maximum VIN) is lower © FTA & QTS LLC

20

H IB IT ED O PR

12V (14.5V) Output

SE

L3

Q1

Q2

C1

L1

Q3

Q4

AU

TH O

L2

R IZ ED

U

D1

Circuit Construction

C1 = Capacitor D1,2 = Rectifier Diodes L1,2,3 = Inductors Q1,2,3,4 = High Power Transistors (IGBT)

R

IG

H

T

L1, Q1,2,3, & 4 = PWM switching circuit (≈25kHz) L1 & L2 = Transformer D1, & D2 = Full wave rectifier L3 & C1 = Output filter for ripple smoothing

C O

PY

1. 2. 3. 4.

-U

N

D2

© FTA & QTS LLC

21

H IB IT ED

3

2

1

O

4

PR

12V (14.5V) Output

SE

L3

Q1

Q2

C1

L1

Q3

Q4

AU

TH O

L2

R IZ ED

U

D1

Circuit Construction

R

IG

H

T

L1, Q1,2,3, & 4 = PWM switching circuit (≈25kHz) L1 & L2 = Transformer D1, & D2 = Full wave rectifier L3 & C1 = Output filter for ripple smoothing

C O

PY

1. 2. 3. 4.

-U

N

D2

C1 = Capacitor D1,2 = Rectifier Diodes L1,2,3 = Inductors Q1,2,3,4 = High Power Transistors (IGBT)

Note: 25kHz is only an example frequency

© FTA & QTS LLC

22

H IB IT ED

Basic dc-dc Converter Design L1 (Transformer Primary Winding)

O

Output During First Half Cycle Operation

SE

PR

12V (14.5V) Output

To Power Inverter High Voltage Bus

L3

•12V Battery •Vehicle Electrical System

L1

Q3

Q4

AU

TH O

L2

+

C1

R IZ ED

_

Load

Q2

U

Q1

D1

-U

N

D2

H

T

Resulting Waveform

R

IG

When L1 is switched OFF by Q4 and Q1 its magnetic field collapses resulting in the illustrated polarities. The resulting waveform is shown.

C O

PY

Animation

© FTA & QTS LLC

23

H IB IT ED

L1 (Transformer Secondary Winding)

O

Output During Second Half Cycle Operation

SE

PR

12V (14.5V) Output L3 D1 C1

•12V Battery •Vehicle Electrical System

L1

_

Q3

Q4

AU

TH O

L2

U

+

Q2

R IZ ED

Load

Q1

-U

N

D2

H

T

Resulting Waveform

R

IG

When L1 is switched OFF by Q3 and Q2 its magnetic field collapses resulting in the illustrated polarities. The resulting waveform is shown.

C O

PY

Animation

© FTA & QTS LLC

24

L1 (Transformer Primary Winding) Output During Both First & Second Half Cycle Operation

To Power Inverter High Voltage Bus

PR

O

12V (14.5V) Output

H IB IT ED

Basic dc-dc Converter Design

L3 C1

•12V Battery •Vehicle Electrical System

+

SE

_

Load

Q1

Q2

U

D1

L1

R IZ ED

L2

Q3

Q4

+

TH O

_

-U

N

Resulting Waveform

AU

D2

C O

PY

R

IG

H

T

When L1 is alternately switched ON / OFF by Q1,2,3 & 4 its magnetic field collapses during both the First and Second half switching cycles and this results in an alternating current waveform

© FTA & QTS LLC

25

Basic dc-dc Converter Design

H IB IT ED

Resulting Waveform

First Half Cycle Operation

Because D2 is not operational in this half wave rectification cycle, this results in half of the electrical power that could be delivered in a full wave rectification cycle

O

14.5V

PR

0V

SE

-5V

To Power Inverter High Voltage Bus

D1

Load

C1

+

TH O

_

_

Q3

Q4

D2

IG

H

T

-U

N

AU

+

Q2

L1

L2

+

•12V Battery •Vehicle Electrical System

Q1

_

L3

R IZ ED

U

12V (14.5V) Output

R

Diode reverse biased (turned off) power not usable during this half-cycle

C O

PY

Polarities of L1 during magnetic Field collapse (field turned OFF) © FTA & QTS LLC

26

Basic dc-dc Converter Design Second Half Cycle Operation

To Power Inverter High Voltage Bus

O

H IB IT ED

Diode reverse biased power not usable during this half-cycle

+

•12V Battery •Vehicle Electrical System

Q2

Q3

Q4

U

Q1

R IZ ED

C1

L1

_

TH O

L2

+

AU

+

Load

_

D1

_

L3

SE

PR

12V (14.5V) Output

14.5V

H

T

Resulting Waveform

-U

N

D2

IG

Because D1 is not operational in this half wave rectification cycle, this results in half of the electrical power that could be delivered in a full wave rectification cycle

0V

C O

PY

R

-5V

© FTA & QTS LLC

27

SE

PR

O

Waveform Outputs from Rectifier Diodes

H IB IT ED

Waveform Output From PWM Switching Circuit and L1

25kHz

R IZ ED

U

First Half Cycle Output

50kHz

AU

Combined First and Second Half Cycles

25kHz

TH O

Second Half Cycle Output

-U

N

Output Waveform Type: Fluctuating or Pulsating dc

C O

PY

R

IG

H

T

Output Frequency: 50kHz  25kHz input frequency  50kHz output (ripple) frequency through full wave rectifier

Note: 25kHz and 50kHz are only example frequencies © FTA & QTS LLC

28

H IB IT ED

Comparison of Unfiltered and Filtered Output Waveforms

SE

PR

O

Unfiltered waveform outputs from Rectifier Diodes D1 & D2

AU

TH O

R IZ ED

U

Filtered waveform outputs from Rectifier Diodes through L3 & C1

-U

N

 Filtered output provides a smoother dc voltage, not pulsating/ripple dc

C O

PY

R

IG

H

T

 Pulsating dc causes electrical “noise” and can cause heating of other electrical and electronic omponents

© FTA & QTS LLC

29

H IB IT ED

dc-dc Converter Testing

Power Inverter/dc-dc Converter

O

dc/dc Converter

Toyota Prius Hybrid System

PR

MG1 Inverter

12 V Battery

SE

Controller

R IZ ED

U

MG1 (Generator)

Engine

MG2 (Motor – Generator)

C O

T

PY

R

IG

H

Test dc-dc Converter by load testing using Carbon-Pile equipment (i.e., VAT 40/60)

-U

N

AU

TH O

95 Amps

MG2 Inverter

Battery Pack

© FTA & QTS LLC

30

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

dc-dc Converter Testing

© FTA & QTS LLC

31

H IB IT ED O PR

Amps

U

SE

Maximum Output kW

R IZ ED

Prius 2003 Prius 2004

AU N Amps are specified at 12.8 – 13.8V Volts

C O

PY

R

IG

H

T

-U

Chev. Yukon 2010

TH O

Chev. Volt 2012

© FTA & QTS LLC

32

H IB IT ED O

TH O

R IZ ED

U

SE

PR

dc-dc Converter

C O

PY

R

IG

H

T

-U

N

AU

CAN Diagnostics

© FTA & QTS LLC

33

dc-dc Converter 12 Volt

SE

Over Voltage Fault

dc-dc Converter 42 Volt

U

R IZ ED



Over Voltage Fault

AU

TH O

 dc-dc Converter 42 Volt Power Supply Fault

PR



 dc-dc Converter 12 Volt Power Supply Fault (Buck)



dc-dc Converter 42 Volt

Under Voltage Fault

N



dc-dc Converter ≈300 Volt

-U

Over Voltage Fault

 dc-dc Converter Over Current

H

T



dc-dc Converter ≈300 Volt

IG

Under Voltage Fault

R

 dc-dc Converter Under Current



PY C O

O

Under Voltage Fault

 Auxiliary Battery Voltage Low

 dc-dc Converter Over Temp

dc-dc Converter 12 Volt



 Auxiliary Battery Voltage High

 dc-dc Converter ≈300 Volt Power Supply Fault (Boost)

H IB IT ED

Basic dc-dc Converter Diagnostic Codes

© FTA & QTS LLC

dc-dc Converter Fault 34

Get in touch

Social

© Copyright 2013 - 2024 MYDOKUMENT.COM - All rights reserved.