LA ALEGRIA DE MULTIPLICAR

LA ALEGRIA DE MULTIPLICAR Octavio Montoya$ Profesor Universidad del Tolima t January 22, 2010 Abstract En este documento se presentan dos formas didá

3 downloads 175 Views 156KB Size

Recommend Stories


Elementary B: Tablas de multiplicar
Elementary B: Tablas de multiplicar UCMAS Spain S.L. C/ Fotja 8, 6. 07610 Palma de Mallorca UCMAS Mental Arithmetic Spain Elementary B: Tablas de m

LAS COFRADIAS Y LA ALEGRIA DEL EVANGELIO
LAS COFRADIAS Y LA ALEGRIA DEL EVANGELIO En octubre de 2012, nuestra Diócesis, bajo el lema “En el corazón del mundo”, organizaba el Primer Congreso

ALEGRIA EN EL ESPÍRITU : LA VISITA DE MARIA A ISABEL
CUADERNO 3 EVANGELIO DE LUCAS ALEGRIA EN EL ESPÍRITU : LA VISITA DE MARIA A ISABEL Encuentro 3 Ambientación 1– Canto inicial : HIMNO DE LA ALEGRIA

Story Transcript

LA ALEGRIA DE MULTIPLICAR Octavio Montoya$ Profesor Universidad del Tolima t January 22, 2010

Abstract En este documento se presentan dos formas didácticas y divertidas de multiplicar números enteros.

MULTIPLICACIÓN CON LA TABLA DEL DOS

TEOREMA 1 Sean mo y no dos enteros positivos y las sucesiones finitas mi = m~-l, ni = = 1,2,3, ... ,k, dónde mk = 1. (Si mi-l es impar, definimos la mitad como ffl'-21 -1 , para evitar números no enteros). Las sucesiones las podemos presentar en un cuadro así: 2ni_l, i

m·o m2

no nI n2

mi

ni

mk-2 mk-l mk = 1

nk-2 nk-l

mI

Se cumple que mo.no es la suma de se puede ilustrar con 1m ejemplo.

nI< 10.'1

[email protected] t www.ut.edu.co

1

ni, dónde mi es impar. Lo anterior

Ejemplo 1. Calculemos 9 x 8. mo=9 ml·=4 m2 =2 m3=1 Luego rno.no

no =8 nI = 16 71,2 = 32 71,3 = 64

= no + 71,3 = 8 + 64 = 72. Es decir:

9 x 8 = 72.

Se puede verificar fácilmente que 9 x 8 = 8 x 9. Verificación del teorema anterior. Sean mo, no dos enteros positivos. Es evidente que mo y no se pueden representar como polinomios en base 2, es decir, de la forma: mo = ai2 i + ai_12i-1 + ak2k + 0.222 + a 12l + a02° no = bj 2j + bj _ 12j - l + br 2r + ~22 + b1 21 + b02°, dónde ak es Oó 1 y br es Oó 1. Elaborando el cuadro de la hipótesis tenemos: mo = ai2' + ai_12' -1 + ... + a222 + a 121 + ao mI = Ui2' -1 + Ui- 12' -2 + ... + a2 21 + al + O m2 = ai2' -2 + Ui- 12' -il + ... + a2 + O+ O

mk = a 12i

./C

+ ... + ak + O+ ... + O

no = bj 2J + bj _ 12J ·1 + ... + b22'"2 + b121 + bo2lf nI = bj 2J +l + bj _ 12J + ... + b2 2il + bl 22 + b0 21 71,2 = bj 2H2 + bj _ 12JH + '" + b224 + b12

Get in touch

Social

© Copyright 2013 - 2025 MYDOKUMENT.COM - All rights reserved.