Story Transcript
Principios de probabilidad
PROBABILIDAD DEFINICIONES
Probabilidad: es la posibilidad numérica de ocurra un evento. Se mide con valores comprendidos entre 0 y 1, entre mayor sea la probabilidad, más se acercará a uno.
Experimento: es toda acción bien definida que conlleva a un resultado único bien definido como el lanzamiento de un dado. Es el proceso que produce un evento.
Espacio muestral: es el conjunto de todos los resultados posibles. Para un dado es SS = (1,2,3,4,5,6)
Definición Clásica de Probabilidad. Modelo de frecuencia relativa La probabilidad de un evento (E), puede ser calculada mediante la relación de el número de respuestas en favor de E, y el numero total de resultados posibles en un experimento.
P E
# Favorable E # Total resultados
1 .16 6 1 .5 Ejemplo 2: La probabilidad de lanzar una moneda y que caiga cara es: 2 Ejemplo 1: La probabilidad de que salga 2 al lanzar un dado es:
Ejemplo 3: La probabilidad de sacar 1,2,3,4,5, o 6 al lanzar un dado es:
1 1 1 1 1 1 1 6 6 6 6 6 6
La probabilidad de un evento está comprendida siempre entre 0 y 1 . La suma de las probabilidades de todos los eventos posibles (E) en un espacio muestral S = 1
Un espacio muestral (S): Es el conjunto Universal; conjunto de todos los “n” elementos relacionados = # Total de resultados posibles.
Probabilidad Compuesta Es la probabilidad compuesta por dos eventos simples relacionados entre sí. En la composición existen dos posibilidades: Unión o Intersección .
Unión de A y B
Página 1 de 13
Principios de probabilidad Si A y B son eventos en un espacio muestral (S), la unión de A y B elementos de el evento A o B o ambos.
A B contiene todos los
Intersección de A y B
Si A y B son eventos en un espacio muestral S, la intersección de A y B por todos los elementos que se encuentran en A y B.
A B está compuesta
Relaciones entre eventos Existen tres tipos de relaciones para encontrar la probabilidad de un evento: complementarios, condicionales y mutuamente excluyentes.
1. Eventos complementarios: El complemento de un evento A son todos los elementos en un espacio muestral (S) que no se encuentran en A. El complemento de A es:
A 1 P A
Ejemplo 4: En el evento A (día nublado), P(A) = .3, la probabilidad de tener un día despejado será 1-P(A) = .7
P A .7 P(A)=.3
2. Probabilidad condicional: Para que se lleve a cabo un evento A se debe haber realizado el evento B. La probabilidad condicional de un evento A dado que ha ocurrido el evento B es:
P A B
P A B , si B 0 P B
Ejemplo 5: Si el evento A (lluvia) = .2 y el evento B (nublado) = .3 , cual es la probabilidad de que llueva en un día nublado? Nota: no puede llover si no hay nubes
P A B
P A B = P B
.2 .67 .3
Página 2 de 13
Principios de probabilidad
A P(A/B)=.67
B
Se dice que dos eventos A y B son independientes si: P(A/B) = P(A) o P(B/A) = P(B). La probabilidad de la ocurrencia de uno no está afectada por la ocurrencia del otro. De otra manera los eventos son dependientes.
Un ejemplo de evento independiente es: ¿Cuál es la probabilidad de que llueva en lunes? El ejemplo de evento dependiente es el ejemplo 5.
3. Eventos mutuamente excluyentes. Cuando un evento A no contiene elementos en común con un evento B, se dice que estos son mutuamente excluyentes.
A
B
Eventos mutuamente excluyentes. Ejemplo 6. Al lanzar un dado: a) cual es la probabilidad de que salga 2 P A B ? a)
P A B
o 3? B) Calcule
1 1 1 .33 6 6 3
b) P A B = 0, ya que al ser conjuntos mutuamente excluyentes la intersección no existe, es imposible que salga 2 y 3 al mismo tiempo. Ley aditiva:
Cuando dos eventos no son mutuamente excluyentes:
Página 3 de 13
Principios de probabilidad
P A B P A PB P A B
Cuando los eventos son mutuamente excluyentes:
P A B P A PB Ejemplo 7.
Ley multiplicativa:
Si los eventos A y B son dependientes:
P A B P A PB A
Si los eventos A y B son independientes:
P A B P A PB Ejemplo 8: Se selecciona una muestra aleatoria n = 2 de un lote de 100 unidades, se sabe que 98 de los 100 artículos están en buen estado. La muestra se selecciona de manera tal que el primer artículo se observa y se regresa antes de seleccionar el segundo artículo (con reemplazo), a) calcule la probabilidad de que ambos artículos estén en buen estado, b) si la muestra se toma sin reemplazo, calcule la probabilidad de que ambos artículos estén en buen estado. A: El primer artículo está en buen estado. B: El segundo artículo está en buen estado. a) Al ser eventos independientes el primero del segundo:
98 98 P A B P A PB = .9604 100 100
A P(A) =.98
B P(B) =.98
Página 4 de 13
Principios de probabilidad b) Si la muestra se toma “sin reemplazo” de modo que el primer artículo no se regresa antes de seleccionar el segundo entonces:
98 97 P A B P A PB A = .9602 100 99 Se observa que los eventos son dependientes ya que para que para obtener el evento B, se tiene que haber cumplido antes el evento A.
B P(B/A)=.97
A
P(A) =.98
TABLAS DE CONTINGENCIA Y TABLAS DE PROBABILIDAD Una tabla de contingencia se forma como sigue:
Genero Hombres Mujeres Total
Clasificación de los empleados Personal Línea Auxiliar 120 150 30 300 50 140 10 200 170 290 40 500
Total
Con esto se forma la tabla de probabilidades dividiendo todos los datos de la tabla entre el total de 500, queda como:
Genero Hombres(M) Mujeres (m) Total
Clasificación de los empleados Personal (S) Línea (L) Auxiliar (A) 0.24 0.30 0.06 0.60 0.10 0.28 0.02 0.40 0.34 0.58 0.08 1.00
Total
De esta forma las probabilidades marginales o de las orillas de la tabla son: P(L) = 0.58 P(M) = 0.60 Se determina las probabilidades conjuntas como sigue: P(MS) = 0.24 P(ML) = 0.30 P(MA) = 0.06
Página 5 de 13
Principios de probabilidad
La probabilidad marginal es la suma de las probabilidades conjujntas correspondientes: P(M) = 0.24 + 0.30 + 0.06 = 0.60 TEOREMA DE BAYES Mediante el teorema de Bayes podemos calcular la probabilidad de que ocurra un determinado evento, cuando no tenemos datos inmediatos del mismo mediante la información que tenemos de otros eventos. Cuando existen dos eventos posibles A y B, la probabilidad de que ocurra Z se describe mediante el “teorema de probabilidad total” el cual es:
P(Z ) P A PZ APB PZ B Mediante el teorema anterior se deduce el teorema de Bayes:
P A Z
P A PZ A P A PZ APB PZ B
Ejemplo 9: En cierta universidad 20% de los hombres y 1% de las mujeres miden más de 1.80m de altura. Asimismo 40% de los estudiantes son mujeres. Si se selecciona un estudiante al azar y se observa que mide más de 1.80m ¿ Cual es la probabilidad de que sea mujer?
Z > 1.80 m A = Hombre B = Mujer P (A) = .60 P (B) = .40 P (Z/A) = .20 P (Z/B) = .01
HOMBRE .80
.99
.20
.01
< 1.80 > 1.80
MUJER
=Z Para encontrar la probabilidad de que sea mujer dado que mide más de 1.80, Utilizando el teorema de Bayes:
P B Z
PB PZ B P A PZ APB PZ B Página 6 de 13
Principios de probabilidad
P(B/Z) = (.4 x .01)/ (.6 x .20 +.4 x .01) = .032. Podemos visualizar P(B/Z) en el siguiente diagrama:
Hombre
Z > .80
P(A/Z)
Mujer
P(B/Z) = .032
Por lo tanto la probabilidad de que sea mujer dado que mide más de 1.80 es .032 = 3.2 %
ANÁLISIS COMBINATORIO Supóngase que una persona tiene dos modos de ir de una ciudad A a otra ciudad B; y una vez llegada a B, tiene tres maneras de llegar a otra ciudad C. ¿De cuántos modos podrá realizar el viaje de A a C pasando por B?
a pie
CIUDAD A
en avión
CIUDAD B en bicicleta
en carro
CIUDAD C
en trasatlántico
Evidentemente, si empezó a pie podrá tomar avión, carro o trasatlántico; y si empezó en bicicleta, también podrá tomar avión, carro o trasatlántico. Utilizando literales (las iniciales) el viajero tuvo las siguientes oportunidades: pa, pc, pt; ba, bc, bt. Que son 6; cada primera oportunidad contó con tres posibilidades. Se tiene: 2 oportunidades X 3 posibilidades = 6 posibilidades.
PRINCIPIO DE CONTEO: Si un evento puede hacerse de a 1 maneras diferentes, y cuando se ha hecho, puede hacerse un segundo evento ( independiente del primero) de a 2 modos diferentes y luego un tercer evento de a3 maneras también diferentes, y así sucesivamente, entonces el número de maneras diferentes en que los eventos se pueden realizar , en el orden indicado es de:
Página 7 de 13
Principios de probabilidad
a1 a2 a3 ....an Ejemplo 10: ¿De cuantos modos podrá vestirse un joven que tiene 3 camisas diferentes, 4 pantalones y dos pares de calzado? Solución: Primer evento (camisas) a1 = 3 Segundo evento ( pantalones) a2 = 4 Tercer evento (zapatos) a3 = 2
a1 a2 a3 3 4 2 24
modos diferentes.
PERMUTACIONES: Una permutación es un arreglo ordenado de una parte de los elementos, o de todos los elementos de un conjunto.
Ejemplo 11: Dado el conjunto de las letras las tres letras cada vez.
o, p, i, escribir todas las permutaciones empleando
Solución: opi, oip, ipo, iop, pio, poi : son seis permutaciones posibles. Ejemplo 12: ¿ Y tomando dos letras solamente cada vez? Solución: op, oi, io, ip, pi, po: son seis permutaciones.
En la mayoría de los casos resulta muy complicado hacer las permutaciones manualmente por lo cual utilizamos la siguiente fórmula:
Prn
n! n r !
donde: n = número total de elementos del conjunto P = Permutaciones r = número de elementos que se toman a la vez. ! = factorial. Nota: 0! = 1 Ejemplo 13: ¿Se toman 3 números de lotería de un total de 50, de cuantas formas se pueden tomar los números?
P350
50 ! 50 ! (50 49 48) 117,600 50 3 ! 47 !
COMBINACIONES: Es el número de subconjuntos de r elementos que se puede formar de un conjunto de n elementos, sin importar el orden de los elementos. Para determinar el número de combinaciones posibles utilizamos:
Página 8 de 13
Principios de probabilidad
Crn
n! n r ! r !
Ejemplo 15: Un entrenador de basket ball tiene 9 jugadores igualmente hábiles, ¿cuántas quintetas podrá formar?
C59
9! 126 4 ! 5 !
Ejemplo 16: Se extraen 5 cartas de una baraja de 52 cartas. Hallar la probabilidad de extraer (a) 4 ases, (b) 4 ases y un rey (c) 3 dieces y dos jotas, (d) un 9,10, jota, reina, rey en cualquier orden. a) P(4 ases) =
4 C4 48C1 52 C5
b) P (4 ases y 1 rey) =
=
1 54145
4 C4 4 C1 52
c) P (3 dieces y 2 jotas) =
C5
1 649740
4 C3 4 C2 52
C5
d) P(nueve, diez, jota, reina, rey) =
1 108290
4 C1 4 C1 4 C1 4 C1 4 C1 52
C5
Página 9 de 13
64 162435
Principios de probabilidad DISTRIBUCIONES MUESTRALES ESTADÍSTICA INFERENCIAL: involucra el uso de un estadístico para sacar una conclusión o inferencia sobre el parámetro correspondiente de la población Por ejemplo se usa:
X media de muestra para estimar la media poblacional s desv. Est. De muestra para estimar la desv. Est. poblacional p proporción en la muestra para estimar la
proporción poblacional
ERROR DE MUESTREO: es la diferencia entre el parámetro poblacional y el estadístico de la muestra utilizado para estimar el parámetro.
Población Con N elementos
Por ejemplo la diferencia entre:
s y
X y
p y
DISTRIBUCIÓN MUESTRAL: es un conjunto de todos los valores posibles para un estadístico y la probabilidad relacionada con cada valor.
Media.muestral. Xi P(cada. Xi) 150 200 250 300 350
1/6 1/6 2/6 1/6 1/6 1.0
Xmedia 1 Desv.est.1
Tomando K=6 muestras de tamaño n cada una
MEDIA DE LAS MEDIAS MUESTRALES o GRAN MEDIA o MEDIA DE MEDIAS:
X
Xi
K 150 200 250 250 300 350 X 250 6 VARIANZA DE LA DISTRIBUCIÓN MUÉSTRAL DE LAS MEDIAS MUESTRALES
2 X
(X X )
2
K
(X )
Xmedia K Desv.est.K
2
K
Del ejemplo anterior:
(150 250 ) 2 (200 250 ) 2 ... (350 250 ) 2 4.167 6 2 X
Página 10 de 13
Principios de probabilidad ERROR ESTÁNDAR DE LA DISTRIBUCIÓN MUESTRAL DE LAS MEDIAS MUESTRALES
X X2 En el caso anterior vale 64.55
X
n
Si el muestreo se realiza sin reemplazo y si el tamaño de muestra es más del 5% de la población (n > 0.05N) debe aplicarse el factor de corrección para poblaciones finitas (FPC) al error estándar.
X
N n N 1
n
TEOREMA DEL LÍMITE CENTRAL A medida que n se vuelve más grande, la distribución de las medias muestrales se aproximará a una distribución normal con una media
X X / n
USO DE LA DISTRIBUCIÓN MUESTRAL Muchas decisiones en los negocios dependen de una muestra completa no tanto de una observación, por tanto se trabaja con la distribución muestral de las medias o de las proporciones, para el caso de las medias se tiene:
Z
X
X
X / n
Con este valor se determina P(Z 0.05N puede requerirse el FCP
Una vez calculando lo anterior ahora se determina Z
Z
p
p
Ver ejemplos páginas 159 – 163.
Página 11 de 13
Principios de probabilidad CUESTIONARIO
Introducción a la probabilidad 1. ¿Qué es probabilidad? 2. ¿Qué es un experimento en el contexto de probabilidad? 3. ¿Qué es un evento? 4. ¿Qué es un espacio muestral? 5. ¿Qué es una regla de conteo para experimentos de varias etapas? 6. ¿Qué es una permutación? 7. ¿Qué es una combinación? 8. ¿Qué requerimientos básicos debe cumplir la asignación de probabilidades? 9. ¿A que se refiere el método clásico de la probabilidad? 10. ¿A que se refiere el método de frecuencia relativa de la probabilidad? 11. ¿A que se refiere el método subjetivo de la probabilidad? 12. ¿Qué es un evento y como se determina su probabilidad? 13. ¿Cómo se calcula la probabilidad mediante el complemento? 14. ¿Cuál es la probabilidad de la unión de dos eventos?. ¿Qué pasa si los eventos son mutuamente excluyentes? 15. ¿Cuál es la intersección de dos eventos? 16. ¿Qué es la probabilidad condicional y la ley multiplicativa para eventos independientes? 17. ¿Qué establece el Teorema de Bayes?
Distribuciones discretas de probabilidad 18. ¿Qué es una variable aleatoria? 19. ¿Cuándo la variable aleatoria es discreta y cuando es continua?
Página 12 de 13
Principios de probabilidad
20. ¿Qué es una distribución discreta de probabilidad? 21. ¿Qué es una distribución de probabilidad acumulada? 22. ¿Cómo se determina su valor esperado y su varianza? 23. ¿Qué es un experimento binomial? 24. ¿Cómo se interpreta la función de distribución binomial, es decir que indican sus términos y que nos determina?. 25. ¿Cuál es su valor esperado y su varianza? 26. ¿Qué es un experimento de Poisson? 27. ¿Cómo se interpreta la función de distribución de Poisson, es decir que indican sus términos y que nos determina? 28. ¿Cuál es su valor esperado y su varianza? 29. ¿Cómo se interpreta la función de distribución Hipergeométrica, es decir que indican sus términos y que nos determina?
Distribuciones continuas de probabilidad 30. ¿Qué es la función de densidad de probabilidad en distribuciones continuas? 31. ¿Cómo se interpreta la distribución Uniforme acumulada es decir que indican sus términos y que nos determina? 32. ¿Cómo se interpreta la función de densidad de la distribución Exponencial, es decir que indican sus términos y que nos determina? 33. ¿Cómo se interpreta la distribución Exponencial acumulada, es decir que indican sus términos y que nos determina?
Página 13 de 13