EJERCICIOS PROGRAMACIÓN LINEAL

EJERCICIOS  PROGRAMACIÓN LINEAL  1.- Una compañía fabrica y venden dos modelos de lámpara L 1 y L 2 . Para su fabricación se necesita un trabajo manua

2 downloads 197 Views 192KB Size

Recommend Stories


EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL
IES Padre Poveda (Guadix) Matemáticas Aplicadas a las CCSS II EJERCICIOS UNIDAD 4: PROGRAMACIÓN LINEAL 1. (2001-M1;Sept-B-1) (3 puntos) Cierta sala

TEMA 6 EL LINEAL. 6.2 Análisis del lineal. 6.1 Definición y funciones del lineal. 6.1 Definición y funciones del lineal
6.1 Definición y funciones del lineal TEMA 6 EL LINEAL Getafe, 27 de febrero de 2009 † H. salen: “El lineal se puede definir como todo el espacio de

REGRESION LINEAL SIMPLE
REGRESION LINEAL SIMPLE Jorge Galbiati Riesco Se dispone de una mustra de observaciones formadas por pares de variables: (x1, y1) (x2, y2) .. (xn, yn

PROGRAMACIÓN LINEAL ENTERA
PROGRAMACIÓN LINEAL ENTERA Programación lineal: hipótesis de perfecta divisibilidad Así pues decimos que un problema es de programación lineal entera,

Regresión lineal simple
Regresión lineal simple _______________________________________________________ 1.-Introducción 2.- Regresión simple. Gráficos 3.- Ecuación de regres

Story Transcript

EJERCICIOS  PROGRAMACIÓN LINEAL  1.- Una compañía fabrica y venden dos modelos de lámpara L 1 y L 2 . Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L 1 y de 30 minutos para el L 2 ; y un trabajo de máquina de 20 minutos para L 1 y de 10 minutos para L 2 . Se dispone para el trabajo manual de 100 horas al mes y para la máquina 80 horas al mes. Sabiendo

que

el

beneficio

por

unidad

es

de

15

y

10

euros

para

L1 y

L2,

respectivamente, planificar la producción para obtener el máximo beneficio. 2.- Con el comienzo del curso se va a lanzar unas ofertas de material escolar. Unos almacenes quieren ofrecer 600 cuadernos, 500 carpetas y 400 bolígrafos para la oferta,

empaquetándolo

de

dos

formas

distintas;

en

el

primer

bloque

pondrá

2

cuadernos, 1 carpeta y 2 bolígrafos; en el segundo, pondrán 3 cuadernos, 1 carpeta y 1 bolígrafo. Los precios de cada paquete serán 6.5 y 7 €, respectivamente. ¿Cuántos paquetes le conviene poner de cada tipo para obtener el máximo beneficio? 3.- En una granja de pollos se da una dieta, para engordar, con una composición mínima de 15 unidades de una sustancia A y otras 15 de una sustancia B. En el mercado sólo se encuentra dos clases de compuestos: el tipo X con una composición de una unidad de A y 5 de B, y el otro tipo, Y, con una composición de cinco unidades de A y una de B. El precio del tipo X es de 10 euros y del tipo Y es de 30 €. ¿Qué cantidades se han de comprar de cada tipo para cubrir las necesidades con un coste mínimo? 4.- Se dispone de 600 g de un determinado fármaco para elaborar pastillas grandes y pequeñas. Las grandes pesan 40 g y las pequeñas 30 g. Se necesitan al menos tres pastillas grandes, y al menos el doble de pequeñas que de las grandes. Cada pastilla grande proporciona un beneficio de 2 € y la pequeña de 1 €. ¿Cuántas pastillas se han de elaborar de cada clase para que el beneficio sea máximo? 5.- Unos grandes almacenes desean liquidar 200 camisas y 100 pantalones de la temporada anterior. Para ello lanzan, dos ofertas, A y B. La oferta A consiste en un lote de una camisa y un pantalón, que se venden a 30 €; la oferta B consiste en un lote de tres camisas y un pantalón, que se vende a 50 €. No se desea ofrecer menos de 20 lotes de la oferta A ni menos de 10 de la B. ¿Cuántos lotes ha de vender de cada tipo para maximizar la ganancia?

 

 

DESARROLLO  Ejercicio 1 

1 Elección de las incógnitas.

x = nº de lámparas L 1

y = nº de lámparas L 2

2 Función objetivo

f(x, y) = 15x + 10y

3 Restricciones

Pasamos los tiempos a horas

20 min = 1/3 h

30 min = 1/2 h

10 min = 1/6 h

Para escribir las restricciones vamos a ayudarnos de una tabla:

L1 L2 Tiempo Manual

1/3 1/2

100

Máquina 1/3 1/6

80

1/3x + 1/2y ≤ 100

1/3x + 1/6y ≤ 80

Como el número de lámparas son números naturales, tendremos dos restricciones más:

x ≥ 0

y ≥ 0

4 Hallar el conjunto de soluciones factibles

Tenemos que representar gráficamente las restricciones.

Al ser x ≥ 0 e y ≥ 0, trabajaremos en el primer cuadrante.

Representamos las rectas, a partir de sus puntos de corte con los ejes.

Resolvemos gráficamente la inecuación: 1/3 x + 1/2 y ≤ 100; para ello tomamos un punto del plano, por ejemplo el (0,0).

1/3·0 + 1/2·0 ≤ 100

1/3·0 + 1/6·0 ≤ 80

La zona de intersección de las soluciones de las inecuaciones sería la solución al sistema de inecuaciones, que constituye el conjunto de las soluciones factibles.

5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

La solución óptima si es única se encuentra en un vértice del recinto. éstos son las soluciones a los sistemas:

1/3x + 1/2y = 100; x = 0 (0, 200)

1/3x + 1/6y = 80; y = 0(240, 0)

1/3x + 1/2y = 100; 1/3x + 1/6y = 80(210, 60)

6 Calcular el valor de la función objetivo

En la función objetivo sustituimos cada uno de los vértices.

f(x, y) = 15x + 10y

f(0, 200) = 15·0 + 10·200 = 2 000 €

f(240, 0 ) = 15·240 + 10·0 = 3 600 €

f(210, 60) = 15·210 + 10·60 = 3 750 €

Máximo

La solución óptima es fabricar 210 del modelo L 1 y 60 del modelo L 1 para obtener un beneficio de 3 750 € .

  Ejercicio 2   

1 Elección de las incógnitas.

x = P1

y = P2

2 Función objetivo

f(x, y) = 6.5x + 7y

3 Restricciones

P1 P2 Disponibles Cuadernos

2

3

600

Carpetas

1

1

500

Bolígrafos

2

1

400

2x + 3y ≤ 600

x + y ≤ 500

2x + y ≤ 400

x ≥ 0

y ≥ 0

4 Hallar el conjunto de soluciones factibles

5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

6 Calcular el valor de la función objetivo

f(x,y)= 6.5 · 200 + 7 · 0 = 1300 €

f(x,y)= 6.5 · 0 + 7 · 200 = 1 400 €

f(x,y)= 6.5 · 150 + 7 · 100 = 1 675 €

Máximo

La solución óptima son 150 P 1 y 100 P 2 con la que se obtienen 1 675 €

 

 

Ejercicio 3   

1 Elección de las incógnitas.

x = X

y = Y

2 Función objetivo

f(x,y) = 10x + 30y

3 Restricciones

X

Y

Mínimo

A

1

5

15

B

5

1

15

x + 5y ≥ 15

5x + y ≥ 15

x ≥ 0

y ≥ 0

4 Hallar el conjunto de soluciones factibles

5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

6 Calcular el valor de la función objetivo

f(0, 15) = 10 · 0 + 30 · 15 = 450

f(15, 0) = 10 · 15 + 30 · 0 = 150

f(5/2, 5/2) = 10 · 5/2 + 30 · 5/2 = 100

Mínimo

El coste mínimo son 100 € para X = 5/2 e Y = 5/2.

 

 

Ejercicio 4   

1 Elección de las incógnitas.

x = Pastillas grandes

y = Pastillas pequeñas

2 Función objetivo

f(x, y) = 2x + y

3 Restricciones

40x + 30y ≤ 600

x ≥ 3

y ≥ 2x

x ≥ 0

y ≥ 0

4 Hallar el conjunto de soluciones factibles

5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

6 Calcular el valor de la función objetivo

f(x, y)= 2 · 3 + 16 = 22 €

f(x, y)= 2 · 3 + 6 = 12 €

f(x, y)= 2 · 6 + 12 = 24 €

Máximo

El máximo beneficio es de 24 €, y se obtiene fabricando 6 pastillas grandes y 12 pequeñas .

 

 

Ejercicio 5

1 Elección de las incógnitas.

x = nº de lotes de A

y = nº de lotes de B

2 Función objetivo

f(x, y) = 30x + 50y

3 Restricciones

A

B

Mínimo

Camisas

1

3

200

Pantalones

1

1

100

x + 3y ≤ 200

x + y ≤ 100

x ≥ 20

y ≥ 10

4 Hallar el conjunto de soluciones factibles

5 Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

6 Calcular el valor de la función objetivo

f(x, y) = 30 · 20 + 50 · 10 = 1100 €

f(x, y) = 30 · 90 + 50 · 10 = 3200 €

f(x, y) = 30 · 20 + 50 · 60 = 3600 €

f(x, y) = 30 · 50 + 50 · 50 = 4000 €

Máximo

Con 50 lotes de cada tipo se obtiene una ganancia máxima de 4000 €.

 

Get in touch

Social

© Copyright 2013 - 2024 MYDOKUMENT.COM - All rights reserved.