Genoma humano

Código genético. Cromosomas. {ADN}. Ética. Dignidad humana

7 downloads 417 Views 155KB Size

Story Transcript

Introducción En este trabajo se observarán diferentes puntos estudiados y que se están estudiando en el famoso Proyecto Genoma Humano. Este trabajo esta basado en las siguientes preguntas: • ¿Qué es el proyecto Genoma Humano? • ¿Cuál es el objetivo de este Proyecto? • ¿Qué se ha hecho actualmente sobre este Proyecto? • ¿Qué importancia representa para el ser humano conocer el Proyecto Genoma? Las grandes revoluciones no se gestan en un día, ni en un mes, ni siquiera en un año. Van forjándose despacio, a paso seguro. Cuando la gente las nota, es porque ya fue arrasada por ellas. Y es comprensible. Mientras en sofisticados laboratorios de Estados Unidos,

Gran Bretaña, Alemania, Francia y Japón, una serie de científicos llevan años conviviendo con muestras de sangre, enzimas, cultivos de bacterias, tinturas fluorescentes y máquinas de secuenciación automatizada, nuestras vidas −la suya y la mía− han transcurrido como de costumbre, lejanas a las promesas que se tejen en ambientes asépticos del mundo desarrollado. El genoma es una especie de "disco duro autobiográfico" o "manual de instrucciones del individuo", escrito en un idioma único de cuatro letras o nucleótidos. En apariencia, son pocas, pero resultan suficientes para registrar todos los detalles del funcionamiento de un ser vivo desde que es concebido hasta que muere. El principio es el mismo para todas las especies, desde la más simple de las bacterias hasta el ser humano más complejo. En los genes, este "código" encierra la más completa información sobre los organismos. Si se trata de personas, está codificado desde el color de sus ojos o la textura de su cabello, hasta su predisposición a padecer una multitud de enfermedades. Parece increíble que tantísimos datos quepan en un sitio tan infinitamente pequeño de la célula: su núcleo. Allí dentro se encuentran los cromosomas, 22 que aporta la madre y otros 22 idénticos que provienen del padre; el último es el llamado par sexual: XX ó XY (la mujer solo puede aportar cromosomas "X", mientras que el hombre puede aportar un "X" o un "Y", de modo que es él quien determina el sexo de sus hijos.) El Proyecto Genoma Humano (P.G.H) es un proyecto internacional, que partió el año 1988, cuyo objetivo principal es conocer la secuencia completa del genoma humano (1, números referentes a bibliografía.) Se llama genoma a la totalidad del material genético de un organismo. El genoma humano posee entre 50.000 y 100.000 genes distribuidos entre los 23 pares de cromosomas de la célula somática humana. Cada cromosoma puede contener más de 250 millones de pares de bases de DNA, y se estima que la totalidad del genoma humano tiene 3000 millones de pares de bases (2). La idea de iniciar un estudio coordinado del genoma humano surgió de una serie de conferencias científicas celebradas entre 1985 y 1987; idea que ganó impulso en Estados Unidos en 1990 con la ampliación de la financiación del Departamento de Energía (D.O.E), y la posterior unión al proyecto de los Institutos Nacionales de Salud (N.I.H). Uno de los primeros directores del programa en Estados Unidos fue el bioquímico James Watson, que en 1962 junto con el biofísico Francis Crick, recibieron el Premio Nobel de 1

Fisiología y Medicina por el descubrimiento de la estructura del DNA (2). Estructura del DNA Comenzando los años 50, J. Watson y F. Crick se unieron en el trabajo de dilucidar la estructura del DNA. La estructura tenia que permitir: − que la molécula de DNA portara información; − que la molécula de DNA pudiera auto duplicarse. Según el modelo propuesto por Watson y Crick, la molécula de DNA consta de dos columnas hechas de grupos fosfato, alternados con moléculas de desoxirribosa, las cuales forman dos hebras paralelas que están enrolladas como una hélice, dejando las bases nitrogenadas hacia adentro. Las bases nitrogenadas son adenina la que se aparea con timina y citosina con guanina (o viceversa).(3). Este tipo de asociación entre las dos cadenas del DNA le confiere dos características importantes: −las dos cadenas son complementarias −y también antiparalelas (4).

El código genético, entonces, viene determinado por el orden que ocupan las bases en la escalera de DNA. Por lo general cada sección de esta escalera tiene una secuencia única que puede utilizarse para diferenciar unos genes de otros y fijar su posición en el cromosoma (2). La siguiente imagen corresponde al supuesto modelo de la cadena de DNA.

Cartografía y Secuenciación El P.G.H., al tratarse de un proyecto que pretende identificar la secuencia completa del genoma humano, con toda una secuencia codificante (exones) y no codificante (intrones), necesita de técnicas que permitan identificar el lugar (locus) y la distancia en que se encuentran los más de 100.000 genes. En un principio, el P.G.H. fue acordado realizarlo en dos etapas, una de Mapeo físico (o cartografía genética) de todos los cromosomas, etapa que termino el año 1998; luego, la segunda etapa corresponde a Secuenciación, la que partió en 1998 (1). Hay dos categorías principales de técnicas de cartografía genética: Ligamiento o cartografía genética. Que identifica sólo el orden relativo a los genes a lo largo del cromosoma; y Cartografía física, un conjunto de métodos más precisos que permite determinar las distancias entre genes dentro del cromosoma. Ambos tipos 2

de cartografía utilizan marcadores genéticos, que son características físicas o moleculares detectables que se diferencian entre los individuos y se transmiten por herencia (2). Los mapas de ligamiento humano se han elaborado sobre todo siguiendo las pautas de herencia de familias extensas a lo largo de muchas generaciones. Estos estudios se limitan a los rasgos físicos heredados, fácilmente observables en todos los miembros de la familia. La cartografía física determina la distancia real entre puntos diferenciados de los cromosomas. Las técnicas más precisas combinan robótica, uso de láser e informática para medir la distancia entre marcadores genéticos. Para realizar estos mapas se extrae DNA de los cromosomas humanos y se rompe aleatoriamente en numerosos fragmentos (2). Una de las estrategias para lograrlo consiste en utilizar secuencias de DNA complementarias (cDNA). Estas secuencias se obtienen gracias al uso de una proteína de origen viral (transcriptaza inversa) que es capaz de copiar una molécula de DNA a partir de una molécula de RNA. Debido a que el RNA pierde todas las secuencias no codificantes (intrones) durante su paso desde el núcleo al citoplasma, al utilizarlo como "modelo" uno se asegura que el DNA obtenido de ese RNA ( o cDNA ) posee sólo genes "útiles" o codificantes. Posteriormente las secuencias se amplifican cientos de veces en un sistema de "copia automática" conocido como reacción de polimerasa en cadena (PCR), con lo cual se obtienen cientos de fragmentos de la secuencia deseada en pocas horas. Finalmente estas secuencias pueden ser sometidas a las distintas estrategias de mapeo que existen en la actualidad (5). La secuenciación es el proceso por el cual se identifican las secuencias en que están unidas los 300 mil millones de pares de bases y luego, posteriormente, saber que significan estas secuencias. Para determinar la secuencia real de nucleótidos, hacen falta mapas físicos muy detallados que recojan el orden exacto de las piezas clonadas del cromosoma. El método por el cual se secuencia el DNA, consiste en replicar piezas específicas de DNA y modificarlas de modo que terminen en una forma fluorescente de uno de los cuatro nucleótidos. En los modernos secuenciadores automáticos de DNA, el nucleótido modificado situado al extremo de una de estas cadenas se detecta con un haz de láser y se determina el numero exacto de nucleótidos de la cadena a continuación se combina esta información en un ordenador para reconstruir la secuencia de pares de bases de la molécula original de DNA (2). El ritmo de acumulación de secuencias de DNA es vertiginoso ya que su cantidad se dobla cada pocos meses. Actualmente se estima que ya se ha secuenciado casi un dos por ciento del total del genoma humano, pero este dato no debe engañar: con las técnicas y ritmos actuales, en los próximos años se obtendrá una tasa de 500 Mb por año. La siguiente imagen corresponde a un mapa genético del genoma humano.

3

ALCANCES DEL P.G.H.

La principal justificación del P.G.H., de cara a la sociedad, en la promesa de avances importantes en medicina. Aunque el estudio de las enfermedades en humanos se ha venido haciendo mayoritariamente en ausencia de su comprensión genética, la disponibilidad de técnicas poderosas anima a emprender la secuenciación, sistemática, lo que suministrará un formidable impulso sobre todo para las enfermedades poligénicas y multifactoriales. Una de las consecuencias más inmediatas del P.G.H. (y que ya se experimenta desde hace algunos años) es la de disponer de sondas y marcadores moleculares para el diagnóstico de enfermedades genéticas, de cáncer y de enfermedades infecciosas. A plazos mayores, se espera que la investigación genómica permita además nuevas generaciones de fármacos, que sean más específicos y que tiendan a tratar las causas y no sólo los síntomas. La terapia génica puede aportar, en un futuro, soluciones a enfermedades tanto hereditarias como infecciosas (8). Sondas y marcadores moleculares La investigación y la implementación de pruebas genéticas logró en 1970 una importante técnica para cartografiar los genes humanos o cariotipos. En el Instituto Karolinska de Suecia se descubrió un método para teñir los cromosomas humanos con colores fluorescentes, los que al ser iluminados con luz ultra violeta se hacen visibles como bastones a franjas claras y oscuras. Estos cariotipos son un instrumento muy útil para el diagnostico de anomalías. Para realizar una prueba en una persona adulta alcanza con una sola gota de sangre, dado que el DNA se puede extraer de los leucocitos (glóbulos blancos). También se puede extraer de las muestras de semen (en la cabeza del espermatozoide), algunos métodos permiten obtenerlo de la saliva (cuando se arrastra con ella células epiteliales de la boca) e incluso, examinando el cabello cuando va acompañado de la raíz (8). Estas son algunas de las enfermedades de las cuales ya existen pruebas disponibles:

−hemofilia (defecto en el control de las hemorragias) −fibrosis quística (acumulación de mucosidades en los pulmones, interfiere en la respiración) −mal de alzheimer (enfermedad degenerativa neurológica marcada por una senilidad precoz) − anemia falciforme ( anemia crónica hereditaria) (8)

Terapia génica Consiste en la aportación de un gen funcional a las células que carecen de esta función, con el fin de corregir una alteración genética o enfermedad adquirida. La terapia génica se divide en dos categorías:

−La primera es la alteración de las células germinales lo que origina un cambio permanente de todo el organismo y generaciones posteriores. Esta terapia génica en la línea germinal no se considera en los seres humanos por razones ética. −El segundo tipo de terapia génica, terapia somática celular, es análoga a un trasplante de órganos. En este caso uno o más tejidos específicos son objetos, mediante tratamiento directo o extirpación del tejido, de la adición de un gen o genes terapéuticos en el laboratorio, junto a la reposición de las células tratadas en el paciente. Se han iniciado diversos ensayos clínicos de terapia genética somática celular, destinados al tratamiento de cánceres o enfermedades sanguíneas, hepáticas o pulmonares. Sin duda el P.G.H. traerá como resultado un sin fin de conocimiento y de aplicaciones, pero ¿será posible secar provecho de algo tan personal como puede ser para la persona la revelación de su intimidad genética? O ¿cómo puede el hombre tomar "algo" y hacerlo propio siendo que es patrimonio de toda la humanidad?. 4

Esta discusión comenzó cuando en junio de 1991, J.Craig Venter presentó una petición para obtener el derecho de propiedad intelectual y comercial sobre 337 genes de tejido nervioso humano obtenidos por él y su laboratorio con la técnica del cDNA y el uso de la reacción de la Polimerasa en Cadena (P.C.R.). Esto causó un revuelo enorme y muchos pensaron que si se inicia una carrera por las patentes con el fin primario de obtener lucro de este conocimiento considerado patrimonio de la humanidad, si todo hubiera seguido así, no resultaría extraño que el año 2005 se transaran en Wall Street la mayor cantidad de secuencias de DNA de la historia (5). El problema se solucionó sólo cuando se logro que se aceptara la patentación de genes en los cuales no solo se patenta la secuencia, sino que también la mutación específica, y además se patenta el permiso para idear desde ahí algún método de terapia génica, alguna droga específica o algún tipo de test génico, a partir de la secuencia que se quiere patentar, dado que el patentamiento debe ir acompañado de una invención sobre la secuencia seguida. Además se tuvo que permitir algún tipo de patentamiento, para de esta manera inducir a las empresas privadas a que inviertan en la investigación y desarrollo del P.G.H. (1)

Consideraciones éticas

El desarrollo científico, en lo que respecta al P.G.H., abre las puertas a un sinnúmero de tratamientos que podrían ser beneficiosos para el hombre. Pero no se debe olvidar que esto implica manipular directamente los mecanismos que transmiten la vida y dirigen la evolución de las especies, incluyendo la nuestra. Estos hechos desbordan por mucho nuestros conceptos de ética y humanidad, ya que nunca nos vimos enfrentados a la posibilidad de que la vida fuera manipulada de este modo. Así surgen preguntas como: ¿se debe prohibir o desaconsejar algún tipo de manipulación genética?, ¿A quién le corresponde la responsabilidad de discriminar entre lo permitido o no?(7). Así, la UNESCO se compromete a promover y desarrollar la reflexión ética en los avances científicos en las áreas de la biología y la genética, proclamando los siguientes principios y aprobando la declaración de estos.

A. LA DIGNIDAD HUMANA Y EL GENOMA HUMANO.

Se refiere a la igualdad y dignidad de los individuos, cualesquiera que sean sus características genéticas; negando así la discriminación por características genéticas.

B. DERECHOS DE LAS PERSONAS INTERESADAS

Se refiere a que toda investigación genética deberá ir de acuerdo del país respectivo, y siempre con la previa información y aprobación del individuo. Si este no está en condiciones de aprobarlo, solo se llevara a cabo la investigación si esta es indispensable para la salud del individuo.

C. INVESTIGACIONES SOBRE EL GENOMA HUMANO.

Se refiere a que ninguna investigación podrá ir más aya de los derechos y dignidad humanas, y que todas las personas deben tener alcance a los progresos biológicos y genéticos. A su vez estas investigaciones deben estar orientadas a aliviar los males de la humanidad.

5

D. CONDICIONES DE EJERCICIO DE LA ACTIVIDAD CIENTÍFICA.

Debe imponerse en los científicos responsabilidades especiales tanto en sus investigaciones como en los resultados de estas. Los estados fijarán el marco de libre ejercicio de la investigación sobre el genoma humano, y estos formaran comités que apreciarán los puntos éticos y jurídicos sobre estas investigaciones.

E. SOLIDARIDAD Y COOPERACIÓN INTERNACIONAL.

Los estados deben promover investigaciones que prevengan y traten enfermedades genéticas o endémicas. Deberán fomentar la difusión internacional sobre esta investigación.

F. FOMENTO DE LOS PRINCIPIOS DE LA DECLARACIÓN.

Se deberá fomentar estos principios a través de la educación y otros medios. Los estados garantizarán el respeto de estos principios (6)

PROPOSISIÓN DE ESTUDIO

El P.G.H. en si acarrea ciertos problemas éticos, problemas de los cuales la UNESCO se comprometió a promover y desarrollar la reflexión ética y las actividades conexas en lo referente a las consecuencias de los progresos científicos y técnicos en el campo de la biología, respetando los derechos y las libertades del ser humano (7). Ahora, en el punto F de la declaración de principios hecha por la UNESCO se afirma que los principios declarados en los puntos anteriores deben ser fomentados por la educación y otros medios, pero ¿ se ha hecho esto en Chile? ¿ Se ha discutido, publicado o comentado públicamente algo sobre el tema?. En realidad, la opinión pública en general tiene muy poco conocimiento sobre lo que se está haciendo en el P.G.H. y sus posibles alcances. A todo lo anterior se suma que en Chile existen grandes vacíos legales con respecto a investigación y experimentación en general. Sobre la base de lo anterior nuestra proposición de estudio se centra en estos vacíos legales y la falta de información que existe en Chile. Nuestra propuesta es hacer encuestas sobre el tema con el fin de tener una idea del conocimiento general y luego profundizar a partir de los datos obtenidos en debates y charlas con el fin de hacer publico el tema. Luego ver de qué forma se ha planteado el tema ante la sociedad y de ahí hacer un estudio con metas como la de legislar sobre cuales serán los enfoques permitidos de los resultados del P.G.H., basados en lo que ya existe en otros países y lo que ha planteado hasta ahora la UNESCO. Ahora, esta propuesta no se centra propiamente tal en toda la sociedad, sino que se basaría y se centraría más que nada en el ambiente científico, docente y legislativo del país, tratando de crear conciencia e iniciativa sobre los alcances del P.G.H. que se podrían producir en Chile.

6

Gracias al proyecto Genoma Humano se ha logrado la adquisición, análisis, modelaje y distribución de los diferentes tipos de información contenida en las secuencias de datos del ADN (como la que aparece en la gráfica) y las proteínas

Conclusión A principios de 1996 el P.G.H. iba muy por delante del plazo y por detrás del presupuesto. Se han cartografiado más de 4.000 genes al menos en un cromosoma específico, se han clonado 1.600 genes de función conocida, se han asociado 1.000 enfermedades genéticas con algún defecto de un gen cartografiado y se han secuenciado más de 150 millones de pares de bases de DNA humano. Se han publicado mapas de todo el genoma humano. El objeto final P.G.H. es estrechar la separación entre marcas hasta aproximadamente 100.000 pares de bases y secuenciar al menos 3.000 millones de pares de bases para el año 2005. En años recientes se han identificado los genes relacionados con enfermedades hereditarias como la fibrosis quística, la distrofia muscular o el mal de Alzheimer. Éste es el primer paso en el desarrollo de mejores pruebas de selección genética, nuevos medicamentos y tratamientos genéticos para atacar estas enfermedades. La capacidad de corregir defectos mortales de la herencia genética humana puede alterar espectacularmente la forma de enfocar la enfermedad. El mayor conocimiento del genoma humano puede tener también consecuencias éticas, jurídicas y sociales muy controvertidas. Los primeros resultados ya han estimulado un debate internacional sobre la conveniencia o no de patentar para uso comercial secuencias de genes humanos y de poner la información sobre genética humana a disposición de empresas de seguros y empleadores, así como de corregir los defectos genéticos de forma que podrían transmitirse de generación en generación, pero sin duda el P.G.H. traerá grandes conocimientos y abrirá nuevas puertas a la ciencia del mañana. Bibliografía 1) Entrevista a la doctora de la Universidad de Chile Pilar Carvallo. 2) Enciclopedia Encarta 98 (P.G.H.) 3) Manual de biología P.C.E. edición Universidad Católica de Chile, paginas 131,132. 4) Ingeniería genética y biotecnología Paulina Balbás, Francisco Bolívar. Página 7 5) Grandes reportajes. La Nación sábado 25 de abril de 1998 6) Declaración Universal sobre el Genoma Humano y los Derechos Humanos (rev.med.chile1997;125:1485− 1489) 7) Principios Éticos para Investigar el Genoma Humano. (rev.med. chile 1993;121;180−183) 8) Páginas de Internet (Links): Aunque son muchas, engloban en su mayoría parte del tema, por lo que les recomiendo revisar una a una. http://www.bioetica.org/ http://www.bioeducation.org/news/cullen−esp.htm http://www.geocities.com/elmedico/genes.html 7

http://www.todito.com.mx/paginas/noticias/10514.html http://www.deusto.es/castell/castpags/estuc05/genoma/gen_entr.htm http://pino.pntic.mec.es/telemaco/revista2/enredar/genoma.htm http://www.congreso.cl/biblioteca/estudios/genoeti.htm http://www.estrelladigital.es/991221/articulos/sociedad_medios/genoma.htm http://www.saludpublica.com/ampl/ampl05/ene090.htm http://ctv.es/USERS/mmori/(13)geno.htm http://www.biomedicas.unam.mx/html/period/may8.htm http://195.53.249.10/1999/12/02/sociedad/02N0067.html http://www.fbbv.es/FBBV/castella/publica/libros/id2f.htm http://w3.el−mundo.es/2000/01/11/sociedad/11N0074.html Colegio: Salesiano Don Bosco Materia: Biología Tema: Genoma Humano

8

Get in touch

Social

© Copyright 2013 - 2024 MYDOKUMENT.COM - All rights reserved.