Story Transcript
ALEJANDRO GARCIA
Probabilidad
F-V: 6.5 O.M. 8.7 Ejercicios: 5.6 Calificación: 7.1
Grupo 23 Semestre 2015-2 Segundo examen parcial
La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige tu respuesta circulando la V (verdadero) o la F (falso) 1. 2. 3. 4. 5. 6. 7. 8. 9.
Se el coeficiente de curtosis es mayor que 4, la distribución tiene forma aplastada En una variable aleatoria estandarizada, el momento de orden r respecto a la media es igual al momento de orden r respecto al origen Si fuera posible determinar con exactitud y precisión todos y cada uno de los momentos de una distribución de probabilidad, sería factible reconstruirla totalmente
V F
espacio probabilístico de partida ( Ω, A , P )
V F
El momento de orden cero con respecto a cualquier punto de referencia es uno Cuando la variable es discreta, el valor esperado generalmente no coincide con ninguno de los posibles valores de la variable
V F
La aleatoriedad de una variable reside en el espacio probabilístico de llegada ( , B , PX ) y no en el
P ( X = 10 ) = 0
La distribución de probabilidad puede ser presentada en forma tabular,como colección de valores de la variable aleatoria y sus probabilidades La variable aleatoria hace corresponder un número real a cada elemento de un espacio probabilístico, que también es un elemento concreto del espacio muestral
V F V F
V F V F V F V F
10.
E ( 2 X + 7 ) = 2E ( X )
V F
11.
Var ( 2 X + 7 ) = 4Var ( X )
V F
12. 13. 14. 15. 16.
La probabilidad de que la variable aleatoria Y tome el valor 10 se expresa: P[y = 10] No siempre resulta factible convertir los resultados de un experimento en valores cuantitativos La gráfica de la función de distribución acumulada de una variable aleatoria siempre es escalonada El parámetro de dispersión más importante es la varianza
V V V V
σ 2 = E ( x ) − E ( x 2 )
V F
2
Cuando no se conoce la distribución de probabilidad de la variable aleatoria, los parámetros de la distribución permiten tener una idea aproximada de su forma. 18. Si el coeficiente de asimetría resulta negativo se dice que la distribución está sesgada a la derecha 19. El momento de orden uno con respecto a la media es cero 20. Si no existe dispersión alrededor de la media, entonces el coeficiente de variación vale uno 17.
F F F F
V F V F V F V F
21.Considere la variable aleatoria continua X cuya función de densidad de probabilidad es: 2 k ( 2 x − x ) , 0 ≤ x ≤ 2 fX ( x ) = 0, en cualquier otro caso
a) Determine el valor de la constante kpara que la función dada sea una función de densidad de probabilidad b) Obtenga la función de distribución acumulada de X. c) Calcule la probabilidad de que X sea menor que 1 d) Calcule el coeficiente de variación de la variable aleatoria X.
ALEJANDRO GARCIA
lapsus
por procedimiento correcto
ALEJANDRO GARCIA
22. Considere la variable aleatoria discreta X cuya función de masa de probabilidad es:
pX ( xi ) =
k , 4 xi
xi = 1,2,3,...
a) Determine el valor de la constante kpara que la función dada sea una función de masa de probabilidad b) Obtenga la función de distribución acumulada de X c) Calcule la probabilidad de que X sea menor que 1 e) Calcule el coeficiente de variación de la variable aleatoria X.
ALEJANDRO GARCIA
ALEJANDRO GARCIA Relaciona correctamente las 15definiciones dadas en la columna derecha con los 15nombres de la columna izquierda, anotando las literales correspondientes en los paréntesis. Correspondencia uno a uno. A - Coeficiente de variación B - Desviación estándar C - Distribución de probabilidad D - Espacio probabilístico E - Función de densidad de probabilidad F - Función de distribución acumulada G - Función de masa de probabilidad H - Media I - Mediana J - Moda K - Momentos L - Rango M - Valor esperado N - Variable aleatoria O– Varianza
23. Función que mide la probabilidad de que la variable aleatoria X tome valores menores o iguales a un valor específico x 24. Valor más probable de la variable aleatoria X 25. Segundo momento con respecto a la media 26. Conjunto de valores numéricos de la variable aleatoria que tienen asociada una medida de probabilidad 27. Terna constituida por un conjunto, una σ-álgebra definida sobre el conjunto y una medida de probabilidad definida en la σ-álgebra 28. Distancia entre los valores máximo y mínimo que toma la variable aleatoria 29. Valor de la variable aleatoria que divide a la distribución de probabilidad en dos partes igualmente probables 30. Función que mide la probabilidad puntual P ( X = xi ) de que la
(F) (H ) (O) (C) (D ) ( L) (I ) (G)
variable aleatoria discreta X tome el valor xi 31. Familia de promedios ponderados, en los que la esperanza matemática de una función E g ( X ) se interpreta como una ponderación de la función por su masa de probabilidad asociada 32. Medida adimensional de dispersión que indica el número de veces que la desviación estándar contiene a la media 33. Función que asigna un número real a cada uno de los resultados del experimento 34. Valor típico indicativo del orden de magnitud de todos losvalores que toma la variable aleatoria 35. Función que mide la densidad de probabilidad cuando la variable aleatoria continua X toma el valor el valor específico x 36. Explica la dispersión promedio de los posibles valores de la variable aleatoria X con respecto a su media 37. Ganancia promedio esperada por un jugador, cuando realiza un gran número de apuestas
(K )
(A ) (N) (J ) (E) (B) (M )
ALEJANDRO GARCIA Relaciona correctamente las 8 variables aleatorias descritas en la columna de la izquierda con los 8 nombres de modelos probabilísticos de la columna derecha, anotando las literales correspondientes en los paréntesis. Correspondencia uno a uno. Variable aleatoria 38. O = número de faltas de ortografía en una cuartilla, si se tiene una intensidad de 1.9 faltas/renglón 39.H = tirante de agua en un recipiente cilíndrico de 2 m de altura, que se llena y se vacía en forma aleatoria 40.T = tiempo entre terremotos de gran intensidad, si la tasa media de ocurrencias es de 2.3 terremotos cada 100 años 41.X = número de bolas rojas obtenidas al extraer, con remplazo, 14 bolas de una urna, si el 70% de las bolas contenidas en ella no son rojas 42.S = tiempo que le lleva a un médico atender a 4 pacientes en su consultorio, si es capaz de atender, en promedio 2.4 pacientes/hora 43.Y = número de automóviles que arriban a un crucero, para que llegue uno que de vuelta a la izquierda, si la probabilidad de virar a la izquierda es de 0.13 44.N = número que aparece en el pentágono que queda hacia arriba, al lanzar un dodecaedro equilibrado 45. Z = número de niños expuestos a una enfermedad contagiosa para que 3 de ellos se contagien, si la probabilidad de que un niño expuesto se contagie es de 1/5
Modelo Probabilístico (T) Exponencial (Z) Binomial negativa (X) Binomial (O) Poisson (S) Gamma o Erlang (N) Uniforme discreta (X) Geométrica (H) Uniforme continua