MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA

MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA CURSO 4 TRIGONOMETRIA Y TRANSFORMACIONES GEOMET

2 downloads 153 Views 470KB Size

Recommend Stories


MINISTERIO DE EDUCACION DIRECCION DE EDUCACION TECNICA Y PROFESIONAL ESPECIALIDAD: SOLDADURA ASIGNATURA: TECNOLOGIA DE LA ESPECIALIDAD
MINISTERIO DE EDUCACION DIRECCION DE EDUCACION TECNICA Y PROFESIONAL ESPECIALIDAD: SOLDADURA ASIGNATURA: TECNOLOGIA DE LA ESPECIALIDAD NIVEL: OBRER

EDUCACION EN TECNOLOGIA: PROPUESTA PARA LA EDUCACION BASICA
República de Colombia MINISTERIO DE EDUCACION NACIONAL DIRECCION GENERAL DE INVESTIGACION Y DESARROLLO PEDAGOGICO PROGRAMA DE EDUCACION EN TECNOLOGI

MINISTERIO DE EDUCACION DIRECCION DE EDUCACION TECNICA Y PROFESIONAL ESPECIALIDADES : MECANICAS ESPECIALIDAD : MECANICA INDUSTRIAL
MINISTERIO DE EDUCACION DIRECCION DE EDUCACION TECNICA Y PROFESIONAL ESPECIALIDADES : MECANICAS ESPECIALIDAD : MECANICA INDUSTRIAL ASIGNATURA : TAL

MINISTERIO DE EDUCACION DIRECCION DE EDUCACION TECNICA Y PROFESIONAL ESPECIALIDAD: METALURGIA NO FERROSA PROGRAMA: HORNOS METALURGICOS
MINISTERIO DE EDUCACION DIRECCION DE EDUCACION TECNICA Y PROFESIONAL ESPECIALIDAD: METALURGIA NO FERROSA PROGRAMA: HORNOS METALURGICOS NIVEL: TECN

MINISTERIO DE EDUCACION DIRECCION DE EDUCACION TECNICA Y PROFESIONAL ESPECIALIDADES: MECANICAS ESPECIALIDAD: METALURGIA
MINISTERIO DE EDUCACION DIRECCION DE EDUCACION TECNICA Y PROFESIONAL ESPECIALIDADES: MECANICAS ESPECIALIDAD: METALURGIA ASIGNATURA: Agregados Metal

MINISTERIO DE EDUCACION DIRECCION NACIONAL DE EDUCACION POPULAR PERMANENTE
MINISTERIO DE EDUCACION DIRECCION NACIONAL DE EDUCACION POPULAR PERMANENTE El desarrollo y el estado de la cuestión sobre el aprendizaje y la educaci

Story Transcript

MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA CURSO 4 TRIGONOMETRIA Y TRANSFORMACIONES GEOMETRICAS EN EL PLANO CARTA DIDÁCTICA

Descripción: Con este módulo se pretende incorporar el lenguaje de la trigonometría al modo de expresión habitual de los docentes, así como estudiar estrategias específicas para la resolución de problemas y aplicar la trigonometría a situaciones de la vida real y a otras áreas de conocimiento. Objetivos generales: Desarrollar la habilidad de las y los docentes para: 1. Utilizar con precisión la terminología y notación de las propiedades, identidades y funciones trigonométricas. 2. Buscar propiedades, regularidades, formular y comprobar conjeturas acerca de propiedades de las funciones trigonométricas aplicando métodos inductivos y deductivos para justificar esas propiedades y relaciones. 3. Aplicar la metodología de resolución de problemas, identificando y diferenciando los elementos conocidos de los que se pretende conocer y los relevantes de los irrelevantes. 4. Identificar y hacer composiciones de transformaciones geométricas sencillas, visualizando las propiedades que se conservan Metodología: Al inicio de cada jornada el facilitador presentará la teoría y ejemplos básicos que permitirán que los y las docentes, aplicando la metodología de resolución de problemas, puedan profundizar en el conocimiento de diversos hechos y conceptos trigonométricos, a la vez que desarrollan su competencia matemática para definir, argumentar y justificar. En cuanto a la organización y gestión de la clase se hará lo siguiente, salvo que se diga otra cosa:  Organizar la clase en parejas o pequeños grupos.  Conceder un tiempo entre 10 y 15 minutos para que los docentes discutan, expliquen, justifiquen y demuestren problemas; mientras que el formador supervisará y alimentará el trabajo grupal.  El formador dedicará entre 10 y 15 minutos para socializar con toda la clase las soluciones o demostraciones respectivas de uno o dos grupos, haciendo las observaciones y correcciones necesarias.

CARTA DIDÁCTICA SABADO 1: 18/JUNIO/2011

Objetivos específicos: 1. Definir y calcular la medida de un ángulo en grados y radianes. 2. Hacer conversiones de grados en radianes y viceversa. 3. Definir y calcular las razones trigonométricas para ángulos agudos. 4. Deducir y usar las identidades trigonométricas fundamentales. 5. Elaborar estrategias específicas de resolución de problemas que involucran propiedades y medidas de ángulos.

Actividades: 1.1 (8:00-8:15) Presentación y organización.  Objetivos  Metodología  Evaluación  Organización

1.2 (8:15-8:45) Examen diagnóstico 1.3 (8:45-9:15) Haciendo uso de dibujos exponer la sección 1.1.1: medición de un ángulo. Luego explicar la relación entre grados y radianes (360 grados = 2π radianes o 180 grados = π radianes) y hacer los ejercicios siguientes de conversión entre grados y radianes y viceversa: 

Convertir de grados a radianes los ángulos siguientes: 30º, 45º, 60º, 90º, 120º, 135º, 150º, 180º, -270º, -45º y -107º



Convertir de radianes a grados los ángulos siguientes: π/6 radianes, -3π/2 radianes, -3π/4 radianes, 7π/3 radianes, 3 radianes, 4π/3 radianes, 5π/4 radianes y 11π/6 radianes 𝜋

1.4 (9:15-9:50) Dado un ángulo agudo θ (0 < 𝜃 < 90° ó 0 < 𝜃 < 2 ), formar un triángulo rectángulo y construir las seis razones trigonométricas (ver

Fig. 1.4.2): 𝑏 , 𝑐

𝑎 , 𝑐

𝑏 , 𝑎

𝑐 , 𝑏

𝑐 𝑎 𝑦 𝑎 𝑏

Luego observar que (por triángulos semejantes) estas razones sólo dependen del tamaño del angulo y no del triángulo formado (ver Fig1.4.3):

Fig. 1.4.1

Fig.1.4.2 𝑏 𝑏′ = , 𝑐 𝑐′

𝑎 𝑎′ = , 𝑐 𝑐′

𝑏 𝑏′ = , 𝑎 𝑎′

Fig. 1.4.3

𝑐 𝑐′ = , 𝑏 𝑏′

𝑐 𝑐′ = 𝑎 𝑎′

𝑦

𝑎 𝑎′ = 𝑏 𝑏′

Como las razones dependen sólo del ángulo θ y no del triángulo en sí, se da a cada razón un nombre que involucra a θ: seno de θ, coseno de θ, tangente de θ, cosecante de θ, secante de θ y cotangente de θ. Estas seis razones se llaman funciones trigonométricas de ángulos agudos y se definen como sigue: Nombre de la función seno de θ

Abreviatura sen θ

coseno de θ

cos θ

tangente de θ

tan θ

cosecante de θ

csc θ

secante de θ

sec θ

Valor 𝑏 𝑐 𝑎 𝑐 𝑏 𝑎 𝑐 𝑏 𝑐 𝑎

sen θ = c. opuesto/hipotenusa cos θ =c. adyacente/hipotenusa tan θ = c. opuesto/c. adyacente csc θ = hipotenusa/c. opuesto sec θ = hipotenusa/ c. adyacente

cotangente de θ

cot θ

𝑎 𝑏

cot θ = c. adyacente/c. opuesto

Como ayuda para recordar estas definiciones, introducir los nombres de hipotenusa para el lado c, cateto opuesto para el lado b y cateto adyacente para el a y parafrasear los nombres de las funciones usando estos términos (ver la última columna de la tabla anterior.). 1.5 (9:50-10:10) RECESO 1.6 (10:10-10:30) Dado el ángulo agudo θ encontrar el valor de las seis funciones trigonométricas si:

1.7 (10:30-10:45) Establecer las identidades fundamentales: 

cscθ =1/sen θ, secθ =1/cos θ, cotθ =1/tan θ



tanθ =sen θ/cos θ y cotθ =cos θ/sen θ

1.8 (10:45-11:00) Dados 𝑠𝑒𝑛 𝜃 =

√5 5

𝑦 𝑐𝑜𝑠𝜃 =

2√5 , 5

encuentre el valor de las funciones trigonométricas restantes de θ.

1.9 (11:00-11:30) Deducción de identidades fundamentales. Considere el siguiente triángulo rectángulo

El Teorema de Pitágoras establece que 𝑎2 + 𝑏 2 = 𝑐 2 . Entonces

𝑎2

𝑏2

𝑐

𝑐2

+ 2

𝑏

𝑎

𝑐

𝑐

= 1 o ( )2 + ( )2 = 1.

Sustituyendo las razones correspondientes se obtiene: (𝑠𝑒𝑛𝜃)2 + (𝑐𝑜𝑠𝜃)2 = 1 o 𝑠𝑒𝑛2 𝜃 + 𝑐𝑜𝑠 2 𝜃 = 1. Esta última relación es válida para cualquier valor del ángulo θ. Por ello se llama identidad trigonométrica. Si esta última identidad se divide entre 𝑐𝑜𝑠 2 𝜃 se obtiene la identidad: 𝑡𝑎𝑛2 𝜃 + 1 = 𝑠𝑒𝑐 2 𝜃. Y si se divide entre 𝑠𝑒𝑛2 𝜃 se obtiene la identidad: 𝑐𝑜𝑡 2 𝜃 + 1 = 𝑐𝑠𝑐 2 𝜃. 1

1.10 (11:30-12:00) Dado el valor de sen 𝜃 = 3 y θ un ángulo agudo, encuentre el valor exacto de las cinco funciones trigonométricas de θ restantes. Solución 1. Usando las definiciones de las funciones trigonométricas. Consideremos el triángulo rectángulo

Por el Teorema de Pitágoras: 𝑎2 + 12 = 32 , entonces el lado adyacente 𝑎 = 2√2. Por tanto, usando las definiciones de las funciones

trigonométricas se encuentra: 𝑐𝑜𝑠 𝜃 =

2√2 3√2 √2 , 𝑡𝑎𝑛𝜃 = , 𝑐𝑠𝑐𝜃 = 3, sec 𝜃 = , 𝑐𝑜𝑡𝜃 = 2√2 3 4 4

Solución 2. Usando las identidades fundamentales establecidas en 1.7 y 1.9.

Se comienza por buscar 𝑐𝑜𝑠𝜃, que se calcula usando la identidad 𝑠𝑒𝑛2 𝜃 + 𝑐𝑜𝑠 2 𝜃 = 1. Así,

𝑡𝑎𝑛𝜃 =

1⁄ 𝑠𝑒𝑛𝜃 3 = 2√2 , = 𝑐𝑜𝑠𝜃 2√2⁄ 4 3

𝑐𝑜𝑡𝜃 =

1 9

+ 𝑐𝑜𝑠 2 𝜃 = 1, de donde 𝑐𝑜𝑠 𝜃 =

1 = 2√2, 𝑡𝑎𝑛𝜃

2√2 . Ahora: 3

𝑒𝑡𝑐.

Tarea 1. Dibujar los ángulos siguientes: 30º, 45º, 60º, 90º, -120º, 135º, 450º, 180º, -270º, -45º, π/6 radianes, -3π/2 radianes, -3π/4 radianes, 7π/3 radianes, 3 radianes, 4π/3 radianes, 5π/4 radianes y 11π/6 radianes. 2. Convierta cada ángulo de grados a radianes: 240º, 330º, -60º, -90º, 120º, 135º. 3. Convierta cada ángulo de radianes a grados: π/3 radianes, -π/2 radianes, -π/6 radianes, 5π/12 radianes, -4π/3 radianes, 5π/4 radianes y π/12 radianes

4. Encuentre el valor de las seis funciones trigonométricas del ángulo θ en cada figura.

5. Use las identidades para encontrar el valor exacto de las cuatro funciones trigonométricas restantes del ángulo agudo θ. 1

√3 2

2

√5 3



𝑠𝑒𝑛 𝜃 = 2 𝑦 𝑐𝑜𝑠𝜃 =



𝑠𝑒𝑛 𝜃 = 3 𝑦 𝑐𝑜𝑠𝜃 =

6. Use la definición o las identidades para encontrar el valor exacto de las otras cinco funciones trigonométricas del ángulo agudo θ.



𝑠𝑒𝑛𝜃 =

√2 , 2

𝑐𝑜𝑠𝜃 =

Recursos    

Material impreso Carta didáctica Pizarra y plumones Examen diagnóstico

√2 , 2

1

1

1

5

𝑐𝑜𝑠𝜃 = 3, 𝑡𝑎𝑛𝜃 = 2, 𝑐𝑜𝑡𝜃 = 2, 𝑠𝑒𝑐𝜃 = 3, 𝑐𝑠𝑐𝜃 = 2

Get in touch

Social

© Copyright 2013 - 2024 MYDOKUMENT.COM - All rights reserved.