Story Transcript
OPERACIONES CON FRACCIONES Tenemos en cuenta, por lo explicado en números denominados, que los números deben ser de la misma denominación para ser sumados. Podemos sumar gramos a gramos, litros a litros, pero ,o litros a gramos. Si pensamos libremente en fracciones como números denominados se verá que la regla de similitud se aplica también a las fracciones. Podemos sumar octavos a octavos, cuartos a cuartos, pero no octavos a cuartos. Para sumar 1/5 cm a 2/5 cm simplemente sumamos los numeradores y mantenemos el denominador sin cambiar. La denominación es quintos; como en los números denominados sumamos 1 quinto a 2 quintos para obtener 3 quintos o 3/5. Fracciones iguales y desiguales Hemos demostrado que las fracciones semejantes se suman simplemente sumando los numeradores y manteniendo el denominador. Entonces, En forma similar podemos restar fracciones semejantes restando los numeradores. Los ejemplos siguientes mostrarán cómo las fracciones pueden dividirse dividiendo el numerador del dividendo por el numerador del divisor. .SOLUCIà N: Podemos establecer el problema como una pregunta: "¿Cuántas veces 1/8 aparece en 3/8, o cuántas veces puede tomarse 1/8 de 3/8?" Vemos que 1/8 puede restarse de 3/8 tres veces. Por tanto, 3/8 ÷ 1/8 = 3 Cuando los denominadores de las fracciones son desiguales se dice que las fracciones son desiguales. La adición, la sustracción o la división no pueden realizarse directamente en fracciones desiguales. La aplicación apropiada de la regla fundamental permite, sin embargo, cambiar su forma de modo que ellos se transformen en fracciones semejantes; entonces se pueden aplicar todas las reglas para las fracciones iguales. MÃ−nimo común denominador Para convertir fracciones desiguales a fracciones iguales es necesario hallar un COMà N DENOMINADOR y generalmente resulta ventajoso encontrar el Mà NIMO COMà N DENOMINADOR (MCD). Esto no es nada más que el mÃ−nimo común múltiplo de los denominadores. Mà NIMO COMà N Mà LTIPLO Si un número es un múltiplo de dos o más números diferentes se lo llama COMà N Mà LTIPLO. AsÃ−, 24 es un múltiplo común de 6 y 2. Hay muchos múltiplos comunes de estos números. Los números 36, 48 y 54, por nombrar unos pocos, son también múltiplos comunes de 6 y 2. El más pequeño de los múltiplos comunes de un grupo de números se llama Mà NIMO COMà N Mà LTIPLO. Que se abrevia MCM. El mÃ−nimo común múltiplo de 6 y 2 es 6. Para encontrar el mÃ−nimo común múltiplo de un grupo de números se separa primero cada uno de los números en sus factores primos. 1
Supongamos que deseamos hallar el MCM de 14, 24 y 30. Separando estos números en sus factores primos tenemos El MCM contiene cada uno de los diversos factores primos mostrados. Cada factor primo se usa el número más grande de veces que aparece en cualquiera de los números. Observe que 3, 5 y 7 aparecen cada uno una sola vez en cualquiera de los números. Por otro lado, 2 aparece tres veces en un número, Obtenemos el siguiente resultado: AsÃ−, pues, 840 es el mÃ−nimo común múltiplo de 14, 24 y 30. Mà XIMO COMà N DIVISOR El número más grande que puede ser dividido en cada uno de los dos o más números dados sin un resto se llama Mà XIMO COMà N DIVISOR de los números dados. Esto se abrevia MCD. También se llama a veces el Mà XIMO FACTOR COMà N. Para determinar el MCD de un grupo de números se separan los números en sus factores primos igual que para el MCM. El MCD es el producto de solamente aquellos factores que aparecen en todos los números. Note en el ejemplo de la sección anterior que 2 es el divisor común mayor de 14, 24 y 30. Determinar el MCD de 650, 900 y 700. El procedimiento es como sigue: 650 = 2 . 52 . 13 900 = 22 . 32 . 52 700 = 22 . 52 . 7 MCD = 2 . 52 = 50 Advierta que 2 y 52 son factores de cada número. El divisor común mayor es 2 x 25 = 50. Empleo del MCD Consideremos el ejemplo: Los números 2 y 3 son primos ambos; de modo que el MCD es 6 Entonces, la suma de 1/2 y 1/3 se realiza como sigue: PRà CTICA DE PROBLEMAS: En cada uno de los siguientes grupos, convertir las fracciones a fracciones semejantes con denominadores comunes mÃ−nimos: Adición Se ha demostrado que al sumar fracciones semejantes sumamos los numeradores. Para sumar fracciones no semejantes éstas primero deben cambiar de modo que tengan denominadores comunes. Aplicamos estas mismas reglas para sumar números mixtos. Se recordará que un número mixto constituye una suma indicada. AsÃ−, 2 1/3 es realmente 2 + 1/3. La suma puede realizarse en cualquier orden. Los ejemplos siguientes muestran la aplicación« de estas reglas: AquÃ− cambiamos 8/7 al número mixto 11/7.
2
Entonces Primero transformamos las fracciones de modo que éstas sean semejantes y tengan el mÃ−nimo común denominador y luego procederemos como antes. Puesto que 11/8 es igual a 13/8 la respuesta final se determina como sigue: PRà CTICA DE PROBLEMAS Sumar y reducir las sumas a los términos más simples: Los siguientes ejemplos muestran una aplicación practica de la suma de fracciones: EJEMPLO: Determinar la longitud total de la pieza de metal exhibida en la figura 4-5 (A). SOLUCIà N: Indicamos primero la suma como sigue: Transformamos en fracciones semejantes y sumamos los numeradores, La longitud total es 3 1/2 pulgadas. PRà CTICA DE PROBLEMAS: Determinar la distancia desde el centro del primer agujero hasta el centro del último agujero en la plancha metálica ilustrada en la figura 4-5 (B). Respuesta: 2 7/16 pulgadas. Sustracción La regla de similitud se aplica en la sustracción de fracciones tanto como en la adición. Algunos ejemplos mostrarán que los probables casos nuevos pueden ser resueltos usando ideas desarrolladas antes. EJEMPLO: Sustraer 1 1/3 de 5 2/3. Vemos que los números enteros se restan de los números enteros; las fracciones de las fracciones. EJEMPLO: Sustraer 1/8 de 4/5. Convirtiendo a fracciones semejantes con MCD, tenemos EJEMPLO: Sustraer 11/12 de 3 2/3 PRà CTICA DE PROBLEMAS: Restar el número menor del mayor y reducir la diferencia a los términos más simples: Los siguientes problemas ilustran la sustracción de fracciones en situaciones prácticas. EJEMPLO: ¿Cuál es la longitud de la dimensión marcada X en el bulón que se ilustra en la figura 4-6 (A)? SOLUC1à N: Longitud total de las partes conocidas. 3