REPASO PRODUCCION ECAES 2009

REPASO PRODUCCION ECAES 2009 Medición de la productividad • Es la razón entre la producción total y los insumos utilizados para dicha producción pro
Author:  Hugo Álvarez Rojo

24 downloads 22 Views 1MB Size

Recommend Stories


Repaso
28/08/2013 Clase: Pliegos Repaso (y otros A4) – Parte II / 2013-08-21 1. Introducción 2. Los A4 del proyecto 3. El Pliego de Bases y Condiciones (

Repaso Diario del Lenguaje
Repaso Diario del Lenguaje (GP0024) Actividades Reproducibles Guerra Publishing, Inc. 6450 NW Loop 410 #101 San Antonio, Texas, 78238 www.guerrapubl

Ejercicios de repaso
Ejercicios de repaso 1. (2001) Tenemos 250 mL de una disolución de KOH 0’2 M. a) ¿Cuántos moles de KOH hay disueltos? b) ¿Cuántos gramos de KOH hay di

Story Transcript

REPASO PRODUCCION ECAES 2009

Medición de la productividad • Es la razón entre la producción total y los insumos utilizados para dicha producción productividad

produccion insumos

• La productividad puede medirse de muchas maneras, pero existen indicadores genéricos para medirla aplicables a cualquier tipo de empresa.

Punto de equilibrio • Ventas – costos variables – costos fijos = utilidad • Ventas = Precio de venta unitario * No. Artículos vendidos • Costos variables = CV Unitario * No. Artículos vendidos • Costos fijos = CF.

PV*Q – CV*Q – CF = 0

Punto de equilibrio • ¿Cuál es el número de unidades necesario para llegar al punto de equilibrio? • Si se fija como meta alcanzar una utilidad, U. ¿ Cuál seria el número de unidades necesario para alcanzar una utilidad meta, U.? • ¿Cómo será el grafico?

Gráfico del punto de equilibrio

Estudio del trabajo • “El estudio del trabajo es el examen sistemático de los métodos para realizar actividades con el fin de mejorar la utilización eficiente de los recursos y de establecer normas de rendimiento con respecto a las actividades que se están realizando”1 1. Introducción al estudio del trabajo. Publicada con la dirección de George Kanawaty. Organización Internacional del Trabajo (OIT). 4ª ed. México: LIMUSA S.A. 2000.

El Estudio del Trabajo (Work Study) Frederick Taylor

Estudio de Métodos

Estudio de Tiempos

Estudio de Movimientos

Gilberth

Medida del trabajo “Work Measurement”

METODOS Y MOVIMIENTOS • DOS PERSPECTIVAS: – Macro: Análisis procedimientos de carácter general( mejorar organización de las secuencias de las operaciones) : MATERIAL-EQUIPOS OPERARIOS. – Micro: Métodos para estudiar al operario (movimientos),la interacción con el puesto de trabajo y con las máquinas y equipos. Toma de tiempos.

Análisis del valor

Diagrama de Proceso de la Operación o Cursograma Sinóptico CAJA

(1.5)

9

CINTA

(0.8)

5

MOLDURA

(1.5)

No se fija tiempo

1 2

(2.0)

3

(1.3)

4

(1.0)

6

(0.8)

7

No se fija tiempo

(0.5)

8 10

Diagrama de Flujo del Proceso o Cursograma analítico (Después)

Diagrama de recorrido

DIAGRAMA BIMANUAL Formato DIAGRAMA BIMANUAL Diagrama # Hoja 1 de 1 Dibujo y pieza: Tubo de vidrio de 3 mm de diámetro y un metro de longitud

Disposición del lugar de trabajo Método original Plantilla

Operación: Cortar trozos de 1,5 cm.

Lugar: Talleres generales. Operario: Compuesto por: Descripción mano Izquierda Sostiene tubo Hasta plantilla Mete tubo en plantilla Empuja hasta el fondo Sostiene tubo Retira un poco tubo Hace girar tubo Empuja hasta el fondo Sostiene tubo Retira tubo Pasa tubo a la derecha Dobla tubo para partirlo Sostiene tubo Corre otra parte del tubo Método Operaciones Transportes Esperas Sostenimientos Inspecciones Totales

Tubo de Vidrio Fecha:

Resumen Actual Izq. 8 2 4 14

Posicion para marcar Descripción mano derecha Recoge lima Sostiene lima Lleva lima hasta el tubo Sostiene lima Muesca tubo con lima Sostiene lima Sostiene lima Acerca lima al tubo Muesca tubo con lima Pone lima en la mesa Va hasta tubo Dobla tubo Suelta trozo cortado Va hasta lima Propuesto

Der. 5 5 4 14

Izq.

Der.

MEDICION DEL TRABAJO – Aplicación de técnicas para determinar el tiempo que invierte un trabajador calificado en llevar a cabo una tarea según una norma de rendimiento preestablecidas. – Se emplea para calcular los tiempos “apropiados” del trabajo cuando se emplea un método previamente estandarizado.

Conceptos Claves en el Estudio de Tiempos • Tiempo Básico: Es el tiempo necesario para ejecutar un elemento al ritmo tipo.

Como se cuantifica? Tiempo observado x Valor del ritmo observado Valor del ritmo tipo Ritmo más rápido que al ritmo tipo

Tiempo observado x Valor del ritmo observado Valor del ritmo tipo

2.75 minutos x 110 100

3.025 minutos

Ritmo menos rápido que al ritmo tipo

Tiempo observado x Valor del ritmo observado Valor del ritmo tipo

3.21 minutos x 95 100

3.0495 minutos

Suplementos Necesidades personales Suplementos fijos Fatiga básica

Suplementos por descanso Suplementos Variables

Suplementos contingencias Suplementos políticos Suplementos especiales

Suplementos totales + Tiempo básico = Contenido de trabajo

**Suplementos • Suplementos Fijos. Necesidades personales y el destinado para recuperar energías. Viajes al baño, bebederos. • Suplementos Variables. Trabajo de pie, trabajo en postura anormal, uso de fuerza o energía muscular, mala iluminación, condiciones atmosféricas, concentración intensa, ruido, tensión mental, monotonía. • Suplementos Especiales. Actividades periódicas, interrupciones de la maquinaria • Suplementos por contingencia: demoras. • Suplementos discrecionales (Políticas de la empresa): Por decisión.

Tiempo Tipo o estándar • Tiempo tipo: Tiempo que un operario capacitado y debidamente entrenado, trabajando a una velocidad normal le tomaría ejecutar una tarea.

Estudio de Tiempos • Uso del cronómetro en la toma de tiempos • Determinación del tiempo tipo (TT)  TO: Tiempo observado promedio  FV: Factor de valoración  TB: Tiempo básico = TO x (FV /100)  TT: Tiempo tipo = TB (1 + A)

donde A son holguras o suplementos por descanso (fracción)**

Ejemplo Estudio de Tiempo OBSERVACIONES

ELEMENTOS

1

2

3

4

TO

FV

TB

A. Montar Válvula

20

22

20

22

21

120

25.2

B. Ensamblar Eje

40

42

42

40

41

120

49.2

C. Montar Carcaza

24

22

26

24

24

120

28.8

D. Desmontar Pieza

8

10

10

8

9

120

10.8

95

120

114

TOTALES

Tomando A = 0.25

TT = 114 x (1 + 0.25) =142.5 Suplementos (%)

Tipos Básicos de Distribución en la Producción • Distribución por Proceso (Taller)  Las máquinas o funciones similares se agrupadas por el proceso que ellos realizan (Metalmecánica, todas las maquinas en un mismo sitio) • Distribución por Producto (Taller en flujo)  Las máquinas se organizan según la secuencia de operaciones necesarias para fabricar el producto. (Alimentos, lavado de autos) • Distribución de Posición Fija  Usado en proyectos dónde el producto no puede moverse (aviones, buques, sitios de construcción) • Distribución por Tecnología de Grupo o Distribución Celular  Las máquinas se agrupan en celdas de máquinas y cada celda corresponde a determinada familia de parte, o a un pequeño grupo de familias de partes.

Volumen

Gráfica de Volumen vs. Variedad en sistemas de producción

Línea de Producción Sistema Flexible Taller de Producción Proyecto

Variedad

Administración de proyectos (Posición Fija) • Principales factores de un proyecto: – Tiempo. – Costo – Disponibilidad de recursos. • ¿Métodos para controlar los anteriores factores ? – CPM (critical path method) Método de la ruta crítica. – PERT (project evaluation and review technique) Evaluación y revisión de proyectos.

Representación de proyectos en forma de Red • Una red es un conjunto de arcos y nodos • Red G = (N, A) • Representación convencional – Actividades en los arcos – Tiempos de las actividades en los arcos

• Representación alterna – Actividades en los nodos – Tiempo en el arco que sale del nodo 25

AOA

AON

S

T

1

U

2

3

S

T

1

U

S

3 T

U

S precede a T y T aU

S precede a T y U

S

4

4

T

T

3

U

1 2

4

2

S

Relación

U

S

U

S y T preceden a U

T

26

AOA

S

1

U

3

V

T

2

S

S

U

5

T

V

3

5

V

T

2

6

4 S

2

T

4

V U

3

Relación

4

U

1

1

AON

5

S

U

T

V

S

T

V

Tanto S como T preceden a U y V S y T preceden a U y T precede a V

S precede a T, T a V yUaV

U 27

F:3

E:3

2

4

G:2 5

B:5

6

H:4

D:4

A:3 1 0

C:1

3 3

E START

3

F

G

5 B

3

2

5 D

A

4 4

3

C

END

3 H

4

1

28

Ruta Crítica • • • •

Es la ruta más larga de la red La duración del proyecto está dada por la ruta crítica Las actividades de la ruta crítica requieren la mayor atención Las actividades de la ruta crítica no tienen holgura (es decir, si se retrasa alguna de esas actividades, se retrasa todo el proyecto) 29

PERT • Se supone que los tiempos son aleatorios. – Ti = tiempo de duración de la actividad i – Ti ~ Aleatorio

30

Pasos 1. Obtener la distribución de probabilidad y los estimadores de la media y de la varianza del tiempo de duración de cada actividad actividad. 2. Con base en las medias calcular la ruta crítica

31

Propuesta Trabajar con tres datos ( de algún experto) • a : Tiempo mínimo de la actividad • b : Tiempo máximo de la actividad • m : Tiempo más probable de la actividad

32

Función de Probabilidad • Generalmente se aproxima a una función beta

tiempo mínimo

tiempo máximo

tiempo más probable 33

Estimaciones • • • • • •

(media) μ = ( a + 4m + b) / 6 (varianza) σ2 = (b – a ) / 36 La ruta crítica se calcula con las estimaciones de las medias (μ) NO con los tiempos más probables m Es posible que coincida con la ruta crítica basada en los tiempos más probables, pero no siempre ocurre. 34

Distribución de probabilidad del tiempo total del proyecto

• • • •

Se supone Normal (¿por qué?) Con media : la suma de las medias Y varianza : la suma de las varianzas DE LAS ACTIVIDADES EN LA RUTA CRITICA

35

Distribución por Proceso. Las máquinas o funciones similares son agrupadas Dpto Torneado

L

L

L

L

L

L

L

L

L

L

Dpto Fresado

Dpto Taladrado

M

M

D

D

D

D

M

M

D

D

D

D

G

G

G

P

G

G

G

P Dpto Pintura

Dpto Cizallado

Recepción y Despacho

A

A Ensamble

A

Distribución por Proceso • Para alta variedad y baja producción • La ruta de cada trabajo no se conoce con anticipación • Trabajan “make to order” (bajo pedido) • Máquinas de propósito general • Objetivo general. Cumplir con fechas de entrega

Consideraciones en la distribución de planta por Proceso • Minimiza los costos del manejo de materiales y transportes (*) • Satisfacer relaciones cualitativas entre áreas de trabajo (*) • Consideraciones adicionales – Áreas de acceso, corredores – Puntos de conexión a suministros de energía, potencia hidráulica, etc.

Distribución por Proceso Minimización de costos Minimizar costo

n

n

i 1 j 1

CijFijDij

donde : n Número Total de Centros de Trabajo o Departamentos i, j Departamentos Individuales Fij Número de movimiento s de Carga desde el Departamento i hasta el Departamento j Dij Distancia entre el Departamento i y el Departamento j Cij Costo unitario de carga desde el Departamento i hasta el Departamento j

Minimización de costos de movimientos Matriz Desde - Hacia Matriz de flujos (viajes) Desde Hacia

A

A

B C

6 9

Matriz de distancias (eg. m)

B

C

10

7 15

7

Flujos * Distancias * Costo A A B

18000

C

18000

B

C

20000

35000 75000

28000

DesdeHacia

A

A

B C

3 2

B

C

2

5 5

4

*Si no es simétrica es porque el sistema de transporte o la ruta depende de la dirección

costo=$1000/m Costo Total =$194000

CRAFT: técnica computarizada de asignación relativa de instalaciones • Objetivo: Minimizar el costo total de transporte de una distribución de planta. • Supuestos: – Los costos de movimiento son independientes de la utilización del equipo. – Los costos de movimiento son función lineal de la longitud de la trayectoria.

Método CRAFT Ejemplo • ¿Cuáles son los centroides de los departamentos A, B, C y D? • ¿Cuál es la distancia entre A y B? 50 A

B

40

(30,35)

(80,35)

30 20 C

D (20,10)

10 10

20

30

(70,10)

40

50

60

70

80

90

100

Satisfacción de relaciones de cercanía Diagrama de Relaciones Producción

O A

Oficinas

U Deposito Recepción y Envío

A

O

E

U O

U

O O

A

X

U

Vestuario Cuarto de Herramientas

I

A Completamente Necesario E Especialmente Importante I Importante O De Acuerdo U No Importante X No Deseable

Optimización relaciones de cercanía Método CORELAP Computerized relationship layout planning TCR :TOTAL CLOSENESS RATE (Suma de relaciones de cercanía)

1. Seleccionar el departamento con el TCR más alto y colocarlo en el centro

2. Iteración 2.1 Seleccionar el departamento con el TCR más alto con respecto a los departamentos ya ubicados 2.2 Ubicarlo sobre la distribución parcial maximizando las cercanías

2.3 Si faltan departamentos por ubicar, volver a paso 2.1

MIRAR EJEMPLO DE CORELAP (ARCHIVO EXCEL)

Distribución en la Producción por Producto • Facilidades organizadas alrededor del producto • El plan de diseño debe minimizar el desequilibrio en la línea – Retrasos entre estaciones de trabajo  Línea de Ensamble • Divide el trabajo en elementos de trabajo (Tareas o Actividades) • Desarrolla diagrama de precedencia de las tareas • Asigna los elementos de trabajo o tareas a los puestos de trabajo

Balanceo de Líneas de Producción Asignación de todas las tareas a realizar para el desarrollo de un producto a una serie de estaciones de trabajo, de manera tal que ninguna de ellas tenga más trabajo del que puede hacer en el tiempo del ciclo y que a su vez se minimice el tiempo de inactividad en todas las estaciones

Cálculos preliminares al balanceo de línea •

Tiempo de ciclo requerido ( C ). Es el tiempo que permanece el producto en cada estación de trabajo. Es dado por la demanda.

C

Tiempo de Producción por Día Producción Diaria Requerida (en unidades)

Ejemplo: Se trabaja 8 horas al día y se requieren 20 piezas al día C = 8/20 = 2/5 horas = 24 minutos



Número teórico mínimo de estaciones de trabajo ( Nt )

Nt

Suma de los Tiempos de las Tareas (T) Tiempo del Ciclo (C)

¿Cómo escoger entre las tareas factibles? Reglas primarias • Menor número de predecesores – Entre las tareas FACTIBLES escoger la que tenga el menor número de predecesores • Tiempo más largo de la tarea – Entre las tareas FACTIBLES escoger la que tenga el mayor tiempo de ejecución • Mayor número de sucesores – Entre las tareas FACTIBLES escoger la que tenga el mayor número de sucesores

Cálculos preliminares al balanceo de línea • Evaluar la eficiencia del equilibrio derivado.

Eficiencia

T N real x C real

T Suma de los Tiempos de las Tareas N real Número Real de Estaciones de Trabajo Creal

Tiempo de Ciclo real

• Si la eficiencia no es satisfactoria, vuelva a balancear utilizando una norma de decisión diferente.

Recordando los pasos en el balanceo de la línea • Dibujar la línea como un grafo de precedencias • Asignar prioridades de asignación • Definir tiempo de ciclo REQUERIDO (C) y número de estaciones teórico (N) • Mientras no haya tareas sin asignar

– Escoger una tarea entre las tareas factibles según la regla primaria. – Asignar la tarea a una estación que tenga tiempo disponible ( < C) – Si no hay estaciones con tiempo disponible, crear una nueva estación

• Calcular eficiencia = = T/ (NReal Creal) • Rebalancear si la eficiencia no es aceptable

Para tener en cuenta • El tiempo de ciclo real de la línea es el tiempo más largo de una estación entre todas las estaciones. • No es lo mismo el tiempo de ciclo requerido que el tiempo de ciclo real de la línea (¿Por qué?) • La idea es balancear la línea de forma tal que los tiempos de ciclo de la línea y requerido sean iguales…. pero no siempre es posible.

Ejemplo 1 La producción diaria deseada para una línea de ensamble es de 500 unidades. Esta línea de ensamble funcionará 420 minutos diarios. La tabla siguiente contiene información sobre

la tarea requerida para este producto, el tiempo de la tarea y la relación de precedencia. Tarea j A B C D E F G H I J K

Tiempo [seg] Predecesoras 45 11 A 9 B 50 15 D 12 C 12 C 12 E 12 E 8 F, G, H, I 9 J

Ejemplo 1 – Solución • Determinar el tiempo del ciclo requerido (C). (420 minutos/día)(60 segundos/minuto) 500 unidades/d ía

C

50.4 segundos/unidad

• Determinar el número teórico mínimo de estaciones de trabajo ( Nt ) requeridas para satisfacer la limitación del tiempo del ciclo. Nt

195 segundos/unidad 50.4 segundos/unidad

3,869 4

Ejemplo: Balanceo de Línea

Estación 1 Estación 3 E N T R A D A S

A

B

F C G J

Estación 2 H D

E I

54

Estación 4 K

S A L I D A S

Control de Piso

• MAXIMIZAR LA TASA DE SALIDA TH (THROUGHPUT) • MINIMIZAR EL TIEMPO EN EL SISTEMA TS • TH: unidades producidas / unidad de tiempo • TS: tiempo de una unidad en el sistema • WIP: cantidad de unidades en el proceso (work in process)

Parámetros • Tasa del cuello de botella (rb): Es la tasa de producción de la estación con mayor porcentaje de utilización. Generalmente es la estación en la que los trabajos tienen mayor tiempo de proceso • Tiempo Total de Proceso T0: Suma de los tiempos de proceso de cada estación en la línea. • WIP crítico: Es el nivel de WIP para el cual, dados los valores de rb y T0, se alcanza la máxima tasa de producción (TH)

SISTEMAS DE CONTROL DE LINEAS DE PRODUCCION  SISTEMAS PUSH Programación hacia delante Balanceo de Línea

 SISTEMAS PULL JUSTO A TIEMPO (JIT) – KANBAN Toyota Production System – a study case (S. Shingo 1981)  SISTEMAS HIBRIDOS SISTEMA CONWIP Factory Physics (: W. Hopp, M. Spearman 1999 )

SISTEMA PUSH Cada vez que una máquina termina de procesar un producto, lo envia a la siguiente estación y arranca a procesar nuevamente. 10 min

20 min

20 min

10 min

SISTEMA PULL 10 min

20 min

20 min

10 min

AUTORIZA

SISTEMA CONWIP Factory Physics (W. Hopp, M. Spearman 1999 ) 10 min

20 min

20 min

10 min

AUTORIZA WIP : Work In Process - Cantidad de trabajo en proceso (u) TS : Tiempo en el sistema (min) TH : Throughput – Tasa de salida del sistema (u/min)

LEY DE LITTLE

WIP = TS * TH

SISTEMA CONWIP W=3

10 min

TIEMPO

20 min

0

20 min

10 min

Unidades Producidas Tiempo de Ciclo

SISTEMA CONWIP W=3

10 min

TIEMPO

20 min

10

20 min

10 min

Unidades Producidas Tiempo de Ciclo

SISTEMA CONWIP W=3

10 min

20 min

20 min

10 min

10

TIEMPO

20

Unidades Producidas Tiempo de Ciclo

SISTEMA CONWIP W=3

10 min

TIEMPO

20 min

30

20 min

10 min

Unidades Producidas Tiempo de Ciclo

SISTEMA CONWIP W=3

10 min

TIEMPO

40

20 min

20 min

10

10

10 min

Unidades Producidas Tiempo de Ciclo

SISTEMA CONWIP W=3

10 min

TIEMPO

20 min

50

20 min

10 min

Unidades Producidas Tiempo de Ciclo

SISTEMA CONWIP W=3

10 min

20 min

10

20 min

10 min

10

PRIMERA UNIDAD GENERADA. ENTRA EN ESTADO ESTABLE.

TIEMPO

60

Unidades Producidas

1

Tiempo de Ciclo

60

INCIALIZACION DE ESTADISTICAS

SISTEMA CONWIP W=3

10 min

TIEMPO

20 min

70

20 min

10 min

Unidades Producidas Tiempo de Ciclo

1

SISTEMA CONWIP W=3

10 min

TIEMPO

80

20 min

20 min

10

10

10 min

Unidades Producidas Tiempo de Ciclo

2

SISTEMA CONWIP W=3

10 min

TIEMPO

20 min

90

20 min

10 min

Unidades Producidas Tiempo de Ciclo

2

LEY DE LA DINAMICA DE PLANTA LEY DE LITTLE

WIP = TS * TH WIP : Work In Process TS : Tiempo de Ciclo TH : Throughtput WIP CRITICO Wo (ejemplo anterior) Wo = To * Rb = 60min * 1u / 20min = 3 unidades

LEYES DE LA DINAMICA DE PLANTA LEY DE LITTLE WIP = TS * TH

WIP

TS

TH

1

60min

1/60=0.0166 u/min = 1 u/hora

2

60min

2/60=0.0333 u/min = 2 u/hora

3

60min

3/60=0.05 u/min = 3 u/hora

4

80min

4/80=0.05 u/min = 3 u/hora

5

100min

5/100=0.05 u/min = 3 u/hora

WIP CRITICO Wo

Wo = To * Rb To = suma de los tiempos de proceso Rb = tasa del cuello de botella Wo = 60min * 1u / 20min = 3 unidades

Mejor Caso Mejor Caso: En el mejor caso no hay variabilidad en los tiempos de proceso. Para un WIP w dado • TS best: To si w ≤ Wo (Wo = Rb .T0) w/rb si w > Wo • TH best: w/To si w ≤ Wo (Wo = Rb .T0) Rb si w > Wo

Peor Caso • El Tiempo en el sistema se aumenta sin incrementar la tasa de producción • Ocurre cuando hay producción por lotes o cuando las partes deben esperar a ser procesadas aún cuando las estaciones subsiguientes estén libres. • TS worst: wT0 • TH worst: w/ TS worst = 1 / T0

SISTEMA CONWIP (PEOR CASO) W=3

10 min

TIEMPO

20 min

0

20 min

10 min

Unidades Producidas Tiempo de Ciclo

SISTEMA CONWIP (PEOR CASO) W=3

10 min

TIEMPO

20 min

10

20 min

10 min

Unidades Producidas Tiempo de Ciclo

SISTEMA CONWIP (PEOR CASO) W=3

10 min

TIEMPO

20 min

20

20 min

10 min

Unidades Producidas Tiempo de Ciclo

SISTEMA CONWIP W=3

10 min

TIEMPO

20 min

30

20 min

10 min

Unidades Producidas Tiempo de Ciclo

SISTEMA CONWIP W=3

10 min

TIEMPO

20 min

30

20 min

10 min

Unidades Producidas Tiempo de Ciclo

SISTEMA CONWIP W=3

10 min

TIEMPO

20 min

50

20 min

10 min

Unidades Producidas Tiempo de Ciclo

SISTEMA CONWIP W=3

10 min

TIEMPO

20 min

70

20 min

10 min

Unidades Producidas Tiempo de Ciclo

SISTEMA CONWIP W=3

10 min

TIEMPO

20 min

90

20 min

10 min

Unidades Producidas Tiempo de Ciclo

Curvas de Operación TH

TS

Rb WTo

W/To W/Rb 1/To

To Wo

W

Mejor Caso Teórico Peor Caso Práctico

Wo

W

Ejemplo Estación 1 2 3 4

¿Cuáles

# máquinas en Tiempo proceso la estación en minutos 1 3 2 5 1 4 1 2

son (i) la máxima tasa de producción del sistema, y (ii) el nivel mínimo de inventario en proceso (WIP) al cual se alcanza la máxima tasa de producción del sistema. Suponga el mejor caso. Muestre sus cálculos.(2 puntos)

Pronósticos • Predicciones de una variable en el tiempo • Basado en: – Comportamiento histórico – Relación con otras variables – Opinión de expertos

85

Elementos de los pronósticos demanda con tendencia

demanda estacionaria

demanda con estacionalidad

86

Qué es Inventario? • Cantidad almacenada de materiales que se utilizan para facilitar la producción o cumplir con la demanda del consumidor • Recurso ocioso que tiene un valor económico potencial (incluiría exceso de capacidad, tanto humana como de maquinaria)

87

Patrón del Inventario vs. Tiempo Inventario

Ciclo del Inventario= T

Q

0 tiempo

88

Costos en los Inventarios • Costos de ordenar pedidos (o preparación) • Costo de conservación o mantenimiento de inventarios – Costo de almacenamiento – Costo de deterioro o pérdida – Costo de capital: Costo de pérdida de oportunidad para otras inversiones

• Costo de penalización por demanda perdida • Por lo general los costos se estiman por decisiones de gerencia.

89

COSTOS ANUALES • El costo anual de inventario es: • Se divide el costo total por ciclo entre el tiempo de ciclo y se tiene el costo anual. • G(Q) : Costo anual de Inventario • G(Q) = (K + cQ) / T + hQT/ 2T • G(Q) = (K + cQ) / T + hQ/ 2 • Note que el costo de mantener es hIpromedio 90

Cantidad económica de lote • • • • •

G(Q) : Costo anual de Inventario G(Q) = (K + cQ) / T + hQ/ 2 Por definición T = Q/ G(Q) = (K /Q + c ) + hQ/ 2 Tomar la derivada dG(Q) /dQ = 0 Q * ó EOQ

2K h 91

Modelos de Inventarios con Demanda Estocástica • Dos tipos de sistemas: – Revisión Periódica: Se monitorea la demanda en puntos específicos del tiempo. Las acciones de control sólo se efectúan cada ciertos tiempos predefinidos – Revisión Continua: Se monitorea la demanda todo el tiempo. Las acciones de control se efectúan de acuerdo a los niveles de inventario

Modelo del vendedor de diarios • Un vendedor de diarios compra todos los días para la venta una cantidad de diarios (Q). Cada diario vale $c y se vende por $v. Al final del día los diarios sobrantes (si los hay) se le venden a un reciclador por un valor unitario de $r (< $c). • La demanda es aleatoria (se sabe su fdp y Fda)

Modelo del Vendedor de Periódicos • Se supone: – El producto es ordenado al comienzo del periodo, y sólo se satisface la demanda de ése período. – Los costos dependen del inventario final. – Se conocen los costos de “exceso de inventario” y “faltante” por unidad de producto. – Se busca obtener la cantidad de producto a ordenar para minimizar los costos al final del período

Modelo del Vendedor de Periódicos co Costo de exceso de inventario por unidad cu Costo de escasez por unidad Q Número de unidades al comienzo del periodo x Demanda durante el periodo G(Q, x) Costo total de exceso y escasez de inventario al final del periodo. co (Q x) si Q x G(Q, x) cu ( x Q) si Q x G(Q, x) co max(0,Q x) cu max(0, x Q)

Modelo del Vendedor de Periódicos Q 0 0

c

(Q x) f ( x)dx cu Q ( x Q) f ( x)dx

dK (Q) 0 dQ F (Q*)

después de álgebra

cu cu c0

MRP • Herramienta computarizada para controlar y planear la adquisición y/o fabricación de materiales, piezas componentes y ensambles de artículos terminados • Objetivo: “Proporcionar la pieza correcta en el tiempo correcto” para cumplir el plan de producción de productos terminados

97

Lista de Materiales Pala completa

Pala

Ensamble de agarradera

Ensamble de agarradera Conector de pala a flecha

Mango)

Mango

Clavo (2)

Clavos (2)

Conector

Tornillos (4)

Ensamble del soporte

Ensamble de soporte

Soporte de agarradera

Clavo (4)

Remaches (4)

Remache (4)

Recogedor

Recogedor

Ensamble de recogedor

Ensamble de recogedor Hoja

Hoja

Remaches (6)

Remaches (6)

Acople de agarradera

Soporte de agarradera Acople de agarradera

98

Ejemplo MRP A Período

-1

0

Requerimiento bruto

1

2

3

4

5

20

40

30

40

10

Recepciones programadas

30 0

Inventario

0

0

0

0

0

20

10

30

30

10

20

10

30

30

10

0

0

1

2

3

4

5

Requerimiento Neto Colocación de órdenes

10

B(2 componentes)

Período Requerimiento bruto Recepciones programadas Inventario

-1

40

60

60

20

0

50 0

Requerimiento Neto Colocación de órdenes

20

40

0

0

0

0

0

0

40

20

60

10

20

0

20

60

10

20

0

0

Tiempo de demora = 1 semana para A y B 99

Programación de la Producción Cumplir fechas de entrega Minimizar el trabajo en proceso (WIP) Minimizar el tiempo de flujo de los trabajos Producir alta utilización de la maquinaria Reducir demora por tiempos de alistamiento

Minimizar costos de producción

100

Elementos de la programación de producción

• Trabajos – fecha de disponibilidad – fecha de entrega – tiempo de proceso – prioridad – tiempo de alistamiento (setup)

• Máquinas – Configuración – Capacidad 101

Tipos de Sistemas de Manufactura • Una Máquina – En general se tienen múltiples trabajos para secuenciarse en la única máquina.

• Máquinas en paralelo – Se tienen estaciones con múltiples máquinas idénticas o no – Los trabajos pueden ir a cualquier máquina de la estación

102

Tipos de Sistemas de Manufactura • Línea de Producción (Flow Line): Sistema de producción en el cual n trabajos se procesan en el mismo orden en las m máquinas. Poca variedad de productos y alta producción. • Taller (Job Shop): Sistema en el cual n trabajos en m máquinas pero no necesariamente siguiendo la misma ruta o con el mismo número de operaciones. Alta variedad y poco volumen.

103

Definiciones Básicas (parámetros) 1. pij: Tiempo de proceso del trabajo j en la máquina i 2. rj: Tiempo de disponibilidad (release) del trabajo 3. dj: Fecha de entrega del trabajo

4. wj: Prioridad del trabajo

104

j

j

j

Definiciones Básicas (Indicadores) • Fecha de terminación (trabajo j): Cj • Makespan: Cmax = Max (Cj) • Tiempo Flujo Promedio: Cj / n (número de trabajos) • Retraso Lj (trabajo j): Cj - dj

• Tardanza Tj (trabajo j): Max (Lj, 0) • Tardanza Media:

Tj / n

• Tardanza Ponderada Total: 105

wjTj

Reglas de Despacho • Una regla de despacho asigna prioridades de procesamiento a los trabajos que se encuentran en la cola de una máquina en un momento dado. • Infinidad de reglas de despacho para secuenciar trabajos. • Dos tipos de reglas: Estáticas y Dinámicas • Estáticas: No dependen del tiempo sino de los parámetros de los trabajos (fecha de entrega, tiempo de proceso, etc.) • Dinámicas: Dependientes del tiempo o status de las máquinas. 106

Reglas de Despacho Estáticas • •

FCFS (First Come First Served) SPT (Shortest Processing Time) First

p[j] < p[j+1] (p[j] es el tiempo de proceso del trabajo programado en la j-ésima posición) •

EDD (Earliest Due Date) First

d[j] < d[j+1] (d[j] es la fecha de entrega del trabajo programado en la j-ésima posición) •

WSPT (Weighted Shortest Processing Time)

w[j]/p[j] > w[j+1]/p[j+1]. Programa primero los trabajos con mayor prioridad y menor tiempo de proceso 107



Reglas de Despacho Dinámicas MS (Minimum Slack)

– El slack (holgura) es el tiempo remanente para cumplir con la fecha de entrega.

max (dj – pj – t, 0) •

CR (Critical Ratio)

CR • • • •

max( d j t ,0) pj

Si varios trabajos tienen holgura o CR = 0, programarlos por SPT Excepto en unos pocos casos, NO existen reglas de despacho (ej. SPT, CR, etc) que garanticen optimalidad. La regla SPT minimiza el flujo promedio La regla EDD minimiza el retraso máximo

108

Flowshop • Configuración: – n trabajos. – m máquinas en serie.

• Las operaciones en cada trabajo siguen la misma secuencia: – Máq. 1  Máq. 2  Máq. 3…  Máq. m

Ejercicio F2 | | Cmax Resuelva el problema F2 | | Cmax utilizando el algoritmo de Johnson trabajo

máq 1

máq 2

1

5

3

2

2

4

3

4

6

4

3

7

5

5

2

6

6

4

7

3

4

8

3

5

Secuencia ?

( 2, 4, 7, 8, 3, 6, 1, 5)

Solución

Get in touch

Social

© Copyright 2013 - 2025 MYDOKUMENT.COM - All rights reserved.