RIEGO POR ASPERSIÓN. Riego por aspersión

RIEGO POR ASPERSIÓN Riego por aspersió aspersión Este método de riego implica una lluvia más o menos intensa y uniforme sobre la parcela con el obje

1 downloads 63 Views 7MB Size

Recommend Stories


Riego por Goteo
Elementos. Estructura. Agricultura. Recursos. Medio Ambiente. Agua. Problemas. Argentina

DISEÑO DE RIEGO POR GOTEO
IRRIGACION Y DRENAJE UNIDAD IV DISEÑO DE RIEGO POR GOTEO DISEÑO DE RIEGO POR GOTEO INTRODUCCION El recurso agua se esta volviendo cada vez mas limit

INSTALACIONES DE RIEGO POR GOTEO
ÁREA DE AGRICULTURA Y GANADERÍA CABILDO DE LANZAROTE Granja Agrícola Experimental Cabildo de Lanzarote Teléfonos: 928 83 65 90/91 Fax 928 84-32-65 gr

DISEÑO DE RIEGO POR ASPERSIÓN
IRRIGACIÓN Y DRENAJE UNIDAD V DISEÑO DE RIEGO POR ASPERSIÓN DISEÑO DE RIEGO POR ASPERSIÓN El riego por aspersión es un método presurizado de aplica

Catálogo riego Riego Fuentes
www.euro-rain.es Catálogo riego 2011-12 Riego Fuentes Índice . PROGRAMADORES Programadores bricolaje a pilas (Grifo) ORBIT: SunMate, Buddy / RPE,

Story Transcript

RIEGO POR ASPERSIÓN

Riego por aspersió aspersión

Este método de riego implica una lluvia más o menos intensa y uniforme sobre la parcela con el objetivo de que el agua se infiltre en el mismo punto donde cae Tanto los sistemas de aspersión como los de goteo utilizan dispositivos de emisión o descarga en los que la presión disponible en el ramal induce un caudal de salida La diferencia entre ambos métodos radica en la magnitud de la presión y en la geometría del emisor

Riego por aspersió aspersión

Unidades que componen el sistema  Grupo de bombeo  Tuberías principales con sus hidrantes  Tuberías portaemisores  Emisores (tuberías perforadas, toberas, aspersores)

Riego por aspersió aspersión Aspersores: Pueden llevar una o dos boquillas cuyos chorros forman ángulos de 25º a 28º con la horizontal para tener un buen alcance y que el viento no los distorsione en exceso

Riego por aspersió aspersión

Riego por aspersió aspersión

Riego por aspersió aspersión

Riego por aspersió aspersión Clasificación de los aspersores: a) Según la velocidad de giro: * Giro rápido (> 6 vueltas/minuto) De uso en jardinería, horticultura, viveros,…

Riego por aspersió aspersión Clasificación de los aspersores: a) Según la velocidad de giro: * Giro rápido (> 6 vueltas/minuto) De uso en jardinería, horticultura, viveros,… * Giro lento (de ¼ a 3 vueltas/minuto) De uso general en agricultura

Para una misma presión, los de giro lento consiguen mayor alcance que los de giro rápido, permitiendo espaciar más los aspersores

Riego por aspersió aspersión Clasificación de los aspersores: b) Según el mecanismo de giro: * De reacción: la inclinación del orificio de salida origina el giro * De turbina: el chorro incide sobre una turbina que origina el giro

Riego por aspersió aspersión

Riego por aspersió aspersión Clasificación de los aspersores: b) Según el mecanismo de giro: * De reacción: la inclinación del orificio de salida origina el giro * De turbina: el chorro incide sobre una turbina que origina el giro * De impacto: el chorro incide sobre un brazo con un muelle que hace girar al aspersor de manera intermitente

Riego por aspersió aspersión Clasificación de los aspersores: c) Según la presión de trabajo: * De baja presión (< 2,5 kg/cm2 o 250 KPa)

Boquilla de Ø 6 vueltas/minuto) * Giro lento (de ¼ a 3 vueltas/minuto) b) Según el mecanismo de giro: * De reacción * De turbina * De impacto c) Según la presión de trabajo: * De baja presión (< 2,5 kg/cm2 o 250 KPa) * De media presión (2,5-4 kg/cm2 o 250-400 Kpa) * De alta presión (>4 kg/cm2 o 400 kPa)

Riego por aspersió aspersión La aplicación del agua El proceso de aplicación de agua de un aspersor consiste en un chorro de agua a gran velocidad que se dispersa en el aire en un conjunto de gotas, distribuyéndose sobre la superficie del terreno Si la pluviometría del sistema supera a la capacidad de infiltración se produce escorrentería Posible deterioro de la superficie del terreno por el impacto de las gotas (si son grandes) Influencia importante del viento sobre uniformidad de distribución en superficie

la

La uniformidad de aplicación se mejora con la redistribución del agua dentro del suelo

Riego por aspersió aspersión

Riego por aspersió aspersión

Riego por aspersió aspersión

UD =

H 25% menos regado H

Merrian y Keller (1978)

n    ∑ xi − x   CU(%) = 100 1 − i =1  nx     

Christiansen (1942)

1 P  UDs = UD 1 + 3 n  4 Pa 

1 P  CU S = CU  1 + n  2 Pa 

Keller y Bliesner (1990)

Keller y Bliesner (1990)

Riego por aspersió aspersión Riego por aspersión en maíz (aspersores a 230 cm)

85%

Dechmi et al., 2001

Riego por aspersió aspersión

La aplicación uniforme principalmente de:

del

agua

depende

• El “modelo” de reparto de agua del aspersor Diseño del aspersor • La disposición de los aspersores en el campo (marco de riego) Número de boquillas • VientoPresión de trabajo En riegos de media o alta la faltapor de Papel fundamental en frecuencia, las pérdidas • Altura del aspersor homogeneidad debida al viento se compensa en evaporación y arrastre riegos sucesivos Influyedeen el tamañodedepresión gota y la longitud de su • Colocación reguladores trayectoria caer • Colocación de al una vaina prolongadora de chorro • Duración del riego

Riego por aspersió aspersión Clasificación de los sistemas de aspersión Móviles Tubería móvil (manual o motorizada) Estacionarios

Semifijos Fijos

Desplazamiento continuo

Tubería fija Permanentes (cobertura total enterrada) Temporales (cobertura total aérea)

Pivote (desplazamiento circular) Ramales Lateral de avance frontal desplazables Ala sobre carro Aspersor gigante

Cañones viajeros Enrolladores

Riego por aspersió aspersión

Estacionarios: Semifijos: Tubería móvil (manual o motorizada)

Riego por aspersió aspersión

Riego por aspersió aspersión

Riego por aspersió aspersión Estacionarios: Semifijos: Tubería fija

Riego por aspersió aspersión Estacionario-Fijo-Permanente

Riego por aspersió aspersión Estacionario-Fijo-Permanente

Riego por aspersió aspersión Estacionario-Fijo-Temporal

Riego por aspersió aspersión

Riego por aspersió aspersión Desplazamiento continuo: Ramales desplazables: Pivote

Riego por aspersió aspersión

Riego por aspersió aspersión

Riego por aspersió aspersión

Riego por aspersió aspersión Desplazamiento continuo: Ramales desplazables: Lateral de avance frontal

Riego por aspersió aspersión

Riego por aspersió aspersión

Riego por aspersió aspersión

Desplazamiento continuo: Aspersor gigante: Cañones viajeros

Riego por aspersió aspersión

Desplazamiento continuo: Aspersor gigante: Enrolladores

Riego por aspersió aspersión

Criterios para la elección del sistema  Cultivos  Suelo  Forma, dimensiones y topografía de la parcela  Disponibilidad de la mano de obra  Análisis económico de la inversión

Riego por aspersió aspersión

La tendencia actual es hacia los sistemas de baja presión, que permitan el riego nocturno (menos evaporación, viento y coste energético) y sean de fácil manejo y automatización

En parcelas pequeñas o de forma irregular se adaptan mejor los sistemas fijos que los ramales móviles

Los sistemas permanentes necesitan menos mano de obra que los temporales, permiten el paso de maquinaria con el cultivo implantado, aunque requieren mayor cuidado en las labores preparatorias del terreno

Riego por aspersió aspersión Los sistemas semifijos de tubería móvil cada vez se utilizan menos por su mayor necesidad de mano de obra, incomodidad de manejo, limitación en cultivos de porte alto, etc., aunque requieren menos inversión Los laterales de avance frontal son muy adecuados para parcelas rectangulares de gran longitud, pero requieren mayor inversión que los pivotes y tienen un manejo más complicado. Las alas sobre carro son interesantes por su movilidad y adecuación al terreno y a los cultivos

Riego por aspersió aspersión

Los cañones  Requieren una elevada presión de trabajo  Tienen un gran tamaño de gota  Se ven muy afectados por las condiciones de viento  Están contraindicados en cultivos delicados y en suelos con baja velocidad de infiltración y débil estructura. Únicamente se recomiendan para riegos de socorro, riego de praderas, etc

Riego por aspersió aspersión VENTAJAS E INCOVENIENTES DEL RIEGO POR ASPERSIÓN

Las ventajas derivan de dos aspectos:

 El control del riego sólo está limitado por las condiciones atmosféricas (pérdidas por evaporación y arrastre, y el efecto del viento sobre la uniformidad)

 La uniformidad de aplicación es independiente de las características hidrofísicas del suelo

Riego por aspersió aspersión VENTAJAS E INCOVENIENTES DEL RIEGO POR ASPERSIÓN

 La dosis de riego es función del tiempo de cada postura, por lo que se puede adaptar a cualquier necesidad  Al poder modificarse fácilmente la pluviometría del sistema, se puede adaptar a cualquier terreno, con independencia de su permeabilidad  Permite una buena mecanización de los cultivos, salvo los sistemas fijos temporales  Se adapta a la rotación de cultivos (la instalación se dimensiona para el más exigente) y a los riegos de socorro

Riego por aspersió aspersión VENTAJAS E INCOVENIENTES DEL RIEGO POR ASPERSIÓN

 No necesita de nivelaciones, adaptándose a topografías onduladas  Dosifica de forma rigurosa los riegos ligeros, lo cual es importante en nascencia para ahorrar agua  Pueden conseguirse altos grados de automatización, (más inversión, menos mano de obra)  En algunas modalidades permite el reparto de fertilizantes y tratamientos fitosanitarios, así como la lucha contra heladas

Riego por aspersió aspersión VENTAJAS E INCOVENIENTES DEL RIEGO POR ASPERSIÓN

 Evita la construcción de acequias y canales, con lo que se aumenta la superficie útil respecto a los riegos por superficie

 Es el método más eficaz para el lavado de sales, con el inconveniente de que la energía empleada en la aplicación encarece la operación

 Los sistemas móviles o semifijos requieren menos inversión, aunque a costa de una menor uniformidad y eficiencia de riego

Riego por aspersió aspersión VENTAJAS E INCOVENIENTES DEL RIEGO POR ASPERSIÓN

 El posible efecto de la aspersión sobre plagas y enfermedades. Efectos de la salinidad en el cultivo.  Interferencia sobre los tratamientos por el lavado de los productos, es necesario establecer una correcta programación de riegos  Mala uniformidad en el reparto de agua por la acción de fuertes vientos  Altas inversiones iniciales funcionamiento y energía

y

elevados

costes

de

Riego por aspersió aspersión CARACTERIZACIÓN DEL FUNCIONAMIENTO Caudal emitido Es función del tamaño de sus boquillas y de la presión existente en las mismas

q = K Hx q = caudal emitido (l/h) H = presión en la boquilla (mca) K y x => constantes características de cada aspersor

Riego por aspersió aspersión CARACTERIZACIÓN DEL FUNCIONAMIENTO Caudal emitido

q = K Hx ∆H=10 mca => ∆q=200 l/h

1500

q = 205 H 0,523

1400

q (l/h)

1300 1200 1100 1000

y = 204,78x0,5232 R 2 = 0,9985

900 800 0

10

20

30

40

50

H (mca)

Riego por aspersió aspersión

Riego por aspersió aspersión CARACTERIZACIÓN DEL FUNCIONAMIENTO

Marco o espaciamiento entre aspersores Determina el solape entre los círculos mojados por los aspersores contiguos para lograr una buena uniformidad de reparto de agua Los marcos normalmente adoptados son: 12x12 12x15 15x15 12x18 18x18 (en rectángulo) 18x15 21x18 (en triángulo) En general son múltiplos de 6 ó 9 m para sistemas con tuberías en superficie, pudiendo tomar cualquier valor para sistemas con tuberías enterradas

Riego por aspersió aspersión CARACTERIZACIÓN DEL FUNCIONAMIENTO

Marco o espaciamiento entre aspersores

S=l

2

S = la lb

l2 3 S= 2

Riego por aspersió aspersión CARACTERIZACIÓN DEL FUNCIONAMIENTO

Marco o espaciamiento entre aspersores El distanciamiento entre aspersores es uno de los aspectos fundamentales del diseño Heerman y Kohl (1980) recomiendan las siguientes separaciones para vientos de velocidad inferior a 2 m/s El 60 % del Diámetro efectivo del aspersor para marcos en cuadrado o en triángulo

Riego por aspersió aspersión CARACTERIZACIÓN DEL FUNCIONAMIENTO

Marco o espaciamiento entre aspersores Entre el 40 y el 75% para marcos rectangulares

Riego por aspersió aspersión CARACTERIZACIÓN DEL FUNCIONAMIENTO

Marco o espaciamiento entre aspersores Este espaciamiento debe reducirse al aumentar la velocidad del viento en la siguiente proporción: 10-12%

si la velocidad del viento es 4 - 6 m/s

18-20%

si la velocidad del viento es 8 – 9 m/s

25-30%

si la velocidad del viento es 10-11 m/s

El diámetro efectivo es: El 95% del diámetro mojado (aspersores de 2 boquillas) El 90% del diámetro mojado (aspersores de 1 boquilla)

Riego por aspersió aspersión CARACTERIZACIÓN DEL FUNCIONAMIENTO

Marco o espaciamiento entre aspersores Los resultados experimentales recomiendan aspersores con dos boquillas (Vories, 1986; Tarjuelo, 1989,1990) por dar un modelo radial de reparto de agua más triangular, que da lugar a solapamientos más uniformes que el modelo elíptico o rectangular, característicos de aspersores de 1 boquilla

Riego por aspersió aspersión CARACTERIZACIÓN DEL FUNCIONAMIENTO

Pluviometría media del sistema Este parámetro es únicamente función del caudal descargado por el aspersor (q) y del área correspondiente al marco de riego adoptado (S)

P( mm h ) =

q (l h ) S (m2 )

Este parámetro se emplea para definir la intensidad de lluvia

Riego por aspersió aspersión CARACTERIZACIÓN DEL FUNCIONAMIENTO

Distribución del caudal sobre el suelo Depende de: • El diseño geométrico del aspersor y de las boquillas • La presión de trabajo • Las condiciones de viento Las rociadas emitidas por el aspersor deben distribuirse de forma que el impacto de las gotas y la intensidad de lluvia no perjudiquen al cultivo ni al suelo, logrando la máxima uniformidad posible

Riego por aspersió aspersión CARACTERIZACIÓN DEL FUNCIONAMIENTO

Distribución del caudal sobre el suelo La dispersión del chorro viene provocada por el choque del brazo móvil o por algunos dispositivos especiales.

La fricción con el aire de la vena líquida constituye la principal causa de que el agua llegue al suelo pulverizada

Riego por aspersió aspersión

La aplicación uniforme principalmente de:

del

agua

depende

• El “modelo” de reparto de agua del aspersor Diseño del aspersor Número de boquillas Presión de trabajo

Riego por aspersió aspersión

La aplicación uniforme principalmente de:

del

agua

depende

• El “modelo” de reparto de agua del aspersor • La disposición de los aspersores en el campo (marco de riego)

Riego por aspersió aspersión

La aplicación uniforme principalmente de:

del

agua

depende

• El “modelo” de reparto de agua del aspersor • La disposición de los aspersores en el campo (marco de riego) • Viento Papel fundamental en las pérdidas por evaporación y arrastre Influye en el tamaño de gota y la longitud de su trayectoria al caer

Riego por aspersió aspersión

La aplicación uniforme principalmente de:

del

agua

depende

• El “modelo” de reparto de agua del aspersor • La disposición de los aspersores en el campo (marco de riego) • Viento En riegos de media o alta frecuencia, la falta de homogeneidad debida al viento se compensa en riegos sucesivos

Riego por aspersió aspersión

La aplicación uniforme principalmente de:

del

agua

depende

• El “modelo” de reparto de agua del aspersor • La disposición de los aspersores en el campo (marco de riego) • Viento • Altura del aspersor • Colocación de reguladores de presión • Colocación de una vaina prolongadora de chorro • Duración del riego

Riego por aspersió aspersión

Riego por aspersió aspersión

Riego por aspersió aspersión

Riego por aspersió aspersión

Riego por aspersió aspersión

Riego por aspersió aspersión

Riego por aspersió aspersión

Riego por aspersió aspersión

Riego por aspersió aspersión

Riego por aspersió aspersión

Riego por aspersió aspersión

Criterios para el trazado de los ramales portaaspersores La red de ramales se orientará siguiendo las líneas de cultivo para facilitar las labores Los ramales portaaspersores se situarán en paralelo a la linde más larga de la parcela o caminos Longitud del lateral; Ramales móviles, máximo 200 m, con Ø de 3’’ a 3,5’’. En ramales fijos, 120-140 m con tubería de PVC 50 mm Cuando se riega en bloques, conviene no concentrar todos los aspersores en el mismo tramo de la tubería principal En instalaciones automatizadas se procurará que el caudal del bloque admita el montaje de válvulas hidráulicas de 100 mm (4’’) de Ø como máximo

Riego por aspersió aspersión

Influencia del tamaño de gota Las gotas pequeñas son fácilmente arrastradas por el viento, distorsionando el modelo de reparto de agua y aumentando la evaporación Las gotas gruesas tienen gran energía cinética, la cual es transferida a la superficie del suelo, pudiendo romper los agregados y afectar a la capacidad de infiltración o a la formación de costra Hoy en día se han desarrollado aplicaciones informáticas que simulan el comportamiento del viento sobre el chorro del aspersor (SIRIAS, Tarjuelo 1998)

Riego por aspersió aspersión

Influencia del tamaño de gota En un aspersor de impacto existen dos fuentes de formación de gotas  El propio chorro a presión, y  La acción del brazo que interrumpe el chorro, que suele originar una distribución de gotas casi perpendicular a la del chorro

Brazo

Boquilla

Boquilla

Riego por aspersió aspersión

Influencia del tamaño de gota  El agua de la periferia del chorro produce gotas pequeñas mientras que la de las proximidades del eje del chorro produce gotas gruesas  El tamaño medio de gota producido cerca de la boquilla es mucho menor que el producido lejos de ésta  Al aumentar la presión se incrementa del número de gotas de menor tamaño  El efecto del tamaño de la boquilla es menor que el de la presión. Se puede apreciar una mayor proporción de gotas pequeñas cuanto menor es el tamaño de la boquilla

Riego por aspersió aspersión

Recomendaciones de manejo  Es mejor utilizar aspersores de dos boquillas que de una, con vaina prolongadora en la boquilla grande para vientos de v >2 m/s  Se consiguen mayores valores de CU con marcos cuadrados (12x12, 18x18) que con los rectangulares equivalentes cuando el aspersor lleva dos boquillas, cualquiera que sea la velocidad del viento  En aspersores con 1 boquilla sucede lo mismo si la boquilla no lleva VP, y justo lo contrario si lleva VP  En marcos rectangulares 12x18 con aspersores de 1 boquilla, se recomienda el menor espaciamiento paralelo a la dirección del viento

Riego por aspersió aspersión

Recomendaciones de manejo  En marcos rectangulares 12x18 con aspersores de 2 boquillas, se recomienda el mayor espaciamiento paralelo a la dirección del viento  Con riego en bloques (aspersores a 12x18 y a una presión de 250 KPa) se obtienen mayores CU cuando el aspersor se sitúa a 2,25 m de altura que a 0,65 m, con independencia de la velocidad del viento. El modelo de reparto se hace más triangular, mejorando los solapamientos. Estas diferencias disminuyen con la presión hasta hacerse imperceptibles para 350-400 KPa  Los modelos de reparto de agua de forma triangular se deforman menos que los elípticos o los de tipo rosquilla al situar el aspersor más alto, y son además menos distorsionados por el viento

Riego por aspersió aspersión

Recomendaciones de manejo  Tratar de evitar presiones superiores a 400 KPa (coste energético, tamaño de gota, etc.)  Aprovechar al máximo el riego nocturno (menores pérdidas por evaporación, menores velocidades de viento, menores costes energético, aunque requiere automatización)  Diseñar los sistemas con pluviometrías bajas (5 – 7 mm/h) para, además de evitar problemas de escorrentía, incrementar la duración del riego y obtener mejores CU  Los aspersores sectoriales deben trabajar con una sola boquilla ya que consiguen un modelo de reparto más triangular

Riego por aspersió aspersión

Recomendaciones de manejo  Como norma general, cuanto menor es el marco de riego mayor es el CU que suele conseguirse  En sistemas de ramales móviles de aluminio se recomiendan marcos de 12x15 ó 12x18 con dos boquillas en el aspersor y una presión media de 300 KPa  En sistemas fijos de superficie se recomiendan marcos rectangulares o triangulares de 12x15 o 18x15 en triángulo, con dos boquillas y una presión de 300 – 350 KPa. En marco cuadrado, 15x15 con aspersores de dos boquillas y 300 KPa

Riego por aspersió aspersión

DISEÑO AGRONÓMICO

DISEÑO HIDRÁULICO

Riego por aspersió aspersión DISEÑO AGRONÓMICO Es una parte fundamental del proyecto de riego, donde hay que tener en cuenta gran número de condicionantes Suelo Clima Cultivos Parcelación etc

Riego por aspersió aspersión DISEÑO AGRONÓMICO Se puede dividir en tres fases • Cálculo de las necesidades de agua de los cultivos • Determinación de los parámetros de riego, dosis, frecuencia o intervalo entre riegos, duración del riego, número de emisores por postura, caudal necesario, etc • Disposición de los emisores en el campo

Riego por aspersió aspersión DISEÑO AGRONÓMICO Cálculo de las necesidades de agua •Necesidades netas Riego por balance hídrico Método FAO (Food and Agricultural Organization)

Riego por aspersió aspersión DISEÑO AGRONÓMICO Cálculo de las necesidades de agua •Necesidades netas

Va ria e c c de ont n e i ón en l a el gu ido su a el en o

V en aria ho el ció riz flu n on jo ta l

ad pi la rid Ca

Pe pr rcol of ac un i ó da n

tía

rre n co Es

g

Pr ec

ie R

ip ita ció n

ET= oI + P – RO – DP + CR ± ∆SF ± ∆SF

Riego por aspersió aspersión DISEÑO AGRONÓMICO Cálculo de las necesidades de agua •Necesidades netas

ET= Riego+Precipitación efectiva ± ∆SF ± ∆SF = ETc – Riego - Pe

Riego por aspersió aspersión DISEÑO AGRONÓMICO Cálculo de las necesidades de agua •Necesidades netas

ETc =

CLIMA

ETo

Kc

CULTIVO

Riego por aspersió aspersión DISEÑO AGRONÓMICO

ETo 0,408 ∆

900 u 2 (e s − e a ) T + 273 ∆ + γ (1 + 0.34 u 2 )

(R N − G ) + γ

Penman-Montheith

ET0 =

Evaporímetro

ETo = Epan Kp

Hargreaves

ETo = 9.388 10-4 Ra (tmed+17.8)(tmax-tmin)0.5

Priestley-Taylor

ETo = 0.408 αpt W Rn

Blaney-Criddle

∆ ∆+γ

W = = p (0,457 α ETo Tpt+ 8,13) =>1,08-1,60

Riego por aspersió aspersión DISEÑO AGRONÓMICO

ETo

http://www.mapa.es/siar/Informacion.asp

http://crea.uclm.es/siar/index.php

Riego por aspersió aspersión DISEÑO AGRONÓMICO 2005-2009 mm/mes

mm/día

Enero

27,3

0,9

Febrero

44,3

1,6

Marzo

85,5

2,8

Abril

110,5

3,7

Mayo

149,8

4,8

Junio

184,6

6,2

Julio

211,4

6,8

Agosto

188,7

6,1

0

Septiembre

121,8

4,1

En

Octubre

74,9

2,4

Noviembre

38,4

1,3

Diciembre

19,7

0,6

1257

250

150

100

e

e

re

D ic ie

m

br

br

ub ct O

vi em

No

o

e

st

br m

Ag o

ie pt

Se

o

lio

ni Ju

Ju

il

o ay M

A br

o

zo ar M

er

o

50

er

mm/mes

200

Fe br

ETo

Riego por aspersió aspersión DISEÑO AGRONÓMICO

Kc

Riego por aspersió aspersión DISEÑO AGRONÓMICO Cálculo de las necesidades de agua •Necesidades netas

NN = ETo Kc Para el diseño se consideran las condiciones de máxima demanda

Riego por aspersió aspersión DISEÑO AGRONÓMICO Determinación de los parámetros de riego •Dosis neta (Dn) Dn = (CC-PM) da DPM z P  CC y PM: en tanto por 1 en peso (θg)

θ v= θg da

 da: densidad aparente (T/m3)  DPM: Déficit Permisible de Manejo  z: profundidad de las raíces (mm)

Unidades Dn (mm)

 P: En caso de que solo se moje una fracción de suelo (% mínimo de suelo mojado en tanto por 1)

Riego por aspersió aspersión DISEÑO AGRONÓMICO Determinación de los parámetros de riego •Dosis neta (Dn)

D N = DPM ∑ (z i da i (CC i − PM i ))

Riego por aspersió aspersión DISEÑO AGRONÓMICO Determinación de los parámetros de riego • Eficiencia de aplicación

Ea =

Agua almacenada en la zona radicular durante el riego Agua aportada con el riego

 Pérdidas por evaporación  Pérdidas por arrastre  Pérdidas por escorrentía  Pérdidas por percolación

Riego por aspersió aspersión DISEÑO AGRONÓMICO Determinación de los parámetros de riego • Eficiencia de aplicación

DISEÑO AGRONÓMICO

DISEÑO AGRONÓMICO

* Factor de disponibilidad Fa=Hn/Hr

Riego por aspersió aspersión

Riego por aspersió aspersión

DISEÑO AGRONÓMICO

Riego por aspersió aspersión

Riego por aspersió aspersión DISEÑO AGRONÓMICO Ea = EDa x Pe x Pd EDa: Eficiencia de distribución para un cierto porcentaje (a) de área adecuadamente regada Pe: Proporción efectiva de agua emitida por los aspersores que llega al suelo Pd: Proporción de agua descargada por los aspersores respecto al total bombeada por el sistema

DISEÑO AGRONÓMICO

DISEÑO AGRONÓMICO

Riego por aspersió aspersión

Riego por aspersió aspersión

DISEÑO AGRONÓMICO

Riego por aspersió aspersión

Pe=0,976+0,005ETP-0,00017ETP²+0,0012V-IG(0,00043ETP+0,00018V+0,00016ETP V) V: velocidad del viento; IG: índice de grosor de gota = 0,032 P1,3/B; P=presión; B: Ø boquilla

Riego por aspersió aspersión DISEÑO AGRONÓMICO Determinación de los parámetros de riego • Necesidades de lavado (LR)

LR =

CE i (5 CE e − CE i ) f

 CEi : Conductividad eléctrica del agua de riego  CEe: Conductividad eléctrica del extracto de saturación del suelo que tolera una determinada reducción de cosecha

Riego por aspersió aspersión DISEÑO AGRONÓMICO Determinación de los parámetros de riego • Necesidades de lavado (LR)

Maas y Hoffman

Riego por aspersió aspersión DISEÑO AGRONÓMICO Determinación de los parámetros de riego • Necesidades de lavado (LR)

Riego por aspersió aspersión DISEÑO AGRONÓMICO Determinación de los parámetros de riego • Necesidades de lavado (LR)

Riego por aspersió aspersión DISEÑO AGRONÓMICO Determinación de los parámetros de riego • Necesidades de lavado (LR)

LR =

CE i (5 CE e − CE i ) f

 CEi : Conductividad eléctrica del agua de riego  CEe: Conductividad eléctrica del extracto de saturación del suelo que tolera una determinada reducción de cosecha  f: eficiencia del lavado

Riego por aspersió aspersión DISEÑO AGRONÓMICO Determinación de los parámetros de riego • Necesidades de lavado (LR) f 100 % suelos arenosos (f=1)

30% suelos arcillosos (f=0,3) 85% resto suelos (f=0,85)

Riego por aspersió aspersión DISEÑO AGRONÓMICO Determinación de los parámetros de riego • Intervalo de riego (IR)

IR =

Dn Nn

IR se ajusta a un número entero Se reajusta la dosis bruta a partir de IR ajustado

D n ajus = IR N n

Riego por aspersió aspersión DISEÑO AGRONÓMICO Determinación de los parámetros de riego • Dosis brutas (Db)

Db =

Dn E a (1 - LR )

Si LR < 0,1

Db =

0,9 D n E a (1 - LR )

Si LR >0,1

Riego por aspersió aspersión DISEÑO AGRONÓMICO Determinación de los parámetros de riego • Horas de riego al día De 16 a 20 horas • Nº de posturas al día Normalmente 2

nº horas

postura

Riego por aspersió aspersión DISEÑO AGRONÓMICO Determinación de los parámetros de riego • Intensidad de lluvia

I=

Db nº horas postura

Riego por aspersió aspersión DISEÑO AGRONÓMICO Determinación de los parámetros de riego • Elección del aspersor DATOS Presión nominal (Pa), se aconseja no superar 300 KPa Caudal nominal (qa) Radio de alcance Pluviometría (Pms) CU para el marco elegido

Riego por aspersió aspersión DISEÑO AGRONÓMICO Determinación de los parámetros de riego • Tiempo de riego

Db ≈ TR Pms TR => Nº entero superior

Db ( final ) = TR Pms

Riego por aspersió aspersión DISEÑO AGRONÓMICO Ejemplo Datos de partida CC = 27% en peso

Cultivo: Maíz

PM = 13% en peso

z=1m

da = 1,35 T/m3

DPM = 50 % IHD

Ea = 90 %

CEe = 2,5 mmhos/cm

CEi = 3 mmhos/cm

(90 % de la producción)

Horas riego al día = 16

CEe = 3,8 mmhos/cm

Posturas de riego al día = 2

(75 % de la producción)

Riego por aspersió aspersión DISEÑO AGRONÓMICO Ejemplo Dn = (CC-PM) da DPM z P Dn = (0,27-0,13) 1,35 0,50 1000 = 94,5 mm

IHD = 189 mm

Riego por aspersió aspersión DISEÑO AGRONÓMICO Ejemplo Kc

ETo

1,4

8 7

1,15

1,2

6

1

5 0,8 4

0,6

0,6 0,4

3

0,4

2

Nn = 6,8 1,15 = 7,82 mm

0,2 0 12-abr

1 0

01-jun

21-jul

09-sep

29-oct

Riego por aspersió aspersión DISEÑO AGRONÓMICO Ejemplo ETc

9 8 7 6 5 4 3 2 1 0 02-ma y 22-m ay 11-jun

01-jul

21-jul 10-ago 30-ago 19-sep 09-oct 29-oct

Riego por aspersió aspersión DISEÑO AGRONÓMICO Ejemplo Producción => 90% del potencial

LR =

CE i (5 CE e − CE i ) f

LR =

3 = 0,37 (5 2,5 − 3) 0,85

Riego por aspersió aspersión DISEÑO AGRONÓMICO Ejemplo Producción => 90% del potencial

Db = Db =

Dn E a (1 - LR )

94,5 = 166,67 mm 0,9 (1 - 0,37)

Nb =

7,82 = 13,79 mm 0,9 (1 - 0,37)

Riego por aspersió aspersión DISEÑO AGRONÓMICO Ejemplo Producción => 75% del potencial

LR =

3 = 0, 22 (5 3,8 − 3) 0,85

Db =

94,5 = 134,6 mm 0,9 (1 - 0,22 )

Nb =

7,82 = 11,13 mm 0,9 (1 - 0,22 )

Riego por aspersió aspersión DISEÑO AGRONÓMICO Ejemplo Sin problemas salinos

Db =

94,5 = 105 mm 0,9

Nb =

7,82 = 8,7 mm 0,9

Riego por aspersió aspersión DISEÑO AGRONÓMICO IR ≈ 12 días Ejemplo CC

200 180

DPM

160 140 120

IHD

100 80 60 40 20 0 02-may 22-may

11-jun

01-jul

21-jul

10-ago

30-ago

19-sep

09-oct

29-oct

Riego por aspersió aspersión DISEÑO AGRONÓMICO Ejemplo

IR =

Db DN = Nb NN

IR =

94,5 = 12,08 días ≈ 12 días 7,82

Riego por aspersió aspersión DISEÑO AGRONÓMICO Ejemplo

D b ajustada = IR N b D b ajustada = 12 8,7 = 104,4 mm (75%)

D b ajustada = 12 11,13 = 133,56 mm

(90%)

D b ajustada = 12 13,79 = 165, 48 mm

Riego por aspersió aspersión DISEÑO AGRONÓMICO Ejemplo Necesidades hídricas del cultivo = 750 mm => 7500 m3/ha Riego neto = 94,5 mm x 7=> 661 mm => 6610 m3/ha Riego bruto = 104,4 mm x 7=> 731 mm => 7310 m3/ha (75%) Riego bruto = 133,56 mm x 7=> 935 mm => 9350 m3/ha (90%) Riego bruto = 165,48 mm x 7=> 1158 mm => 11580 m3/ha

Riego por aspersió aspersión DISEÑO AGRONÓMICO Ejemplo

16 horas riego día = 8 horas postura 2 posturas riego día

Riego por aspersió aspersión DISEÑO AGRONÓMICO Ejemplo

Pms =

Pms =

D b (ajustada) nº horas postura

133,56 mm = 16,69 mm hora 8 horas postura

Riego por aspersió aspersión DISEÑO AGRONÓMICO Ejemplo 2 TNT Doble boquilla 5,16 mm x 3,2 mm Presión nominal = 2,8 kg/cm2 Radio 14,9 m Caudal 2,43 m3/h Marco 12x12 Pluviometría 16,87 mm/h

Riego por aspersió aspersión DISEÑO AGRONÓMICO Ejemplo

TR =

133,56 mm = 7,92 ≈ 8 horas 16,87 mm hora

D b (final) = 8 horas 16,87 mm hora = 134,96 mm

Riego por aspersió aspersión

DISEÑO HIDRÁULICO

Riego por aspersió aspersión DISEÑO HIDRÁULICO Condición de diseño Variación de caudal de los aspersores < 10% q = KH x

dq = K x H x -1 dH

dq =

K=

q Hx

q x H x -1 dH Hx

Riego por aspersió aspersión DISEÑO HIDRÁULICO Condición de diseño Variación de caudal de los aspersores < 10% dq =

q x H x -1 dH Hx

dq dH =x q H

∆H =

x = 0,5 ∆q = 0,1q

1 ∆q 1 0,1q H= H = 0,2H x q 0,5 q

Riego por aspersió aspersión DISEÑO HIDRÁULICO Pérdida de carga máxima en el ramal

Riego por aspersió aspersión DISEÑO HIDRÁULICO Máxima pérdida de carga en el ramal

h =aF JL a= 1 (Scobey) a=1,20 (1,10-1,25) Resto F= Coeficiente de Christiansen Tabulado (β=1,80)

Riego por aspersió aspersión DISEÑO HIDRÁULICO

Riego por aspersió aspersión DISEÑO HIDRÁULICO Máxima pérdida de carga en el ramal

RÉGIMEN Turbulento liso Transición Turbulento rugoso

β 1,75 1,8-1,9 2

UTILIZACIÓN PREFERENTE Polietileno PVC, Fibrocemento y Aluminio Fundición

Riego por aspersió aspersión DISEÑO HIDRÁULICO Máxima pérdida de carga en el ramal Generalización del coeficiente F para cualquier valor de lo

Fr =

r=

lo

r + nF − 1 r + n −1

l

n = número de emisores del ramal

F = Coeficient e de Christiansen para l o = l

Riego por aspersió aspersión DISEÑO HIDRÁULICO Máxima pérdida de carga en el ramal Pa γ

Sin pendiente (ramal horizontal)

h max ≤ 0,20

Pendiente ascendente

h max + Hg ≤ 0,20

Pendiente descendente

Pa γ

h max − Hg ≤ 0,20

Pa γ

Riego por aspersió aspersión DISEÑO HIDRÁULICO Máxima pérdida de carga en el ramal

Riego por aspersió aspersión DISEÑO HIDRÁULICO

Riego por aspersió aspersión DISEÑO HIDRÁULICO Longitud máxima del ramal

a) Si el ramal está abastecido por su punto medio

L max =

S + S(n − 1) 2

b) Si el ramal está abastecido por extremo

L max = S n

Riego por aspersió aspersión DISEÑO HIDRÁULICO Elección la situación de la tubería principal

Según la longitud máxima del ramal portaaspersores y las dimensiones de la parcela TANTEO

Riego por aspersió aspersión DISEÑO HIDRÁULICO Longitud real del ramal portaaspersores Se establece la longitud real del ramal y el nº de aspersores que contiene

L=

S + S(n − 1) 2

L=S n

n=

L 1 n =  +  + 1  S 2

L S

Riego por aspersió aspersión DISEÑO HIDRÁULICO Presión en el origen del ramal (Po/γ)

H a = H 'a + h 'a

Ha’=Altura del tubo portaaspersor ha’=pérdida de carga en el tubo portaaspersor

Po Pn = + h + Ha ± H g γ γ

Hg positivo en ramal ascendente y negativo en descendente

 Po  P P  − H a  − n = h ± H g ≤ 0,2 a γ  γ  γ

Riego por aspersió aspersión DISEÑO HIDRÁULICO Presión en el origen del ramal (Po/γ) Caudal medio=Q/n

Riego por aspersió aspersión DISEÑO HIDRÁULICO Presión en el origen del ramal (Po/γ)

Po

γ

=

Hg 3 + h + Ha ± γ 4 2

Pa

Hg

positivo en ramal ascendente y negativo en descendente

Riego por aspersió aspersión DISEÑO HIDRÁULICO Presión en el último aspersor (Pn/γ)

PN P0 = − h - Ha ± H g γ γ PN

γ

=

Hg

positivo en ramal ascendente y negativo en descendente

Hg 1 − h± γ 4 2

Pa

Riego por aspersió aspersión DISEÑO HIDRÁULICO Condiciones de diseño

Ramal horizontal

P  P P h =  N − H a  − n ≤ 0,2 a 2  γ  γ

Riego por aspersió aspersión DISEÑO HIDRÁULICO Condiciones de diseño

Ramal ascendente

h ≤ 0,2

Pa − Hg 2

Riego por aspersió aspersión DISEÑO HIDRÁULICO Condiciones de diseño

Ramal descendente

Pa + Hg 2

h > Hg

h ≤ 0,2

h = Hg

Pn Pa P1 = = γ γ γ

h < Hg

 P Pn  Po −  − H a  = H g − h ≤ 0,2 a γ  γ γ 

Po Pa = + Ha γ γ

Riego por aspersió aspersión DISEÑO HIDRÁULICO Bocas de riego (hidrantes)

Intervalo de riegos (IR) X Nº posturas/día =

Nº posiciones en el intervalo de riego por aspersor

Nº posiciones en el intervalo de = Nº bocas de riego X Nº posiciones/boca riego por aspersor

Se tantean las posibilidades y se selecciona la que más convenga

Riego por aspersió aspersión DISEÑO HIDRÁULICO Separación entre las bocas de riego (Sb) Sb = Separación entre ramales X Nº posiciones por boca La separación entre la 1º boca y el borde de la finca es Sb/2

Nº Vanos =

Long finca -

Sb

2

Sb

N 0 bocas riego = N 0 vanos + 1

Riego por aspersió aspersión DISEÑO HIDRÁULICO Longitud de la tubería central (L)

L = nº vanos x S b Longitud de la tubería auxiliar

BR

Riego por aspersió aspersión DISEÑO HIDRÁULICO Longitud de las mangueras (en su caso) y posición Nº teórico de aspersores Nº real de aspersores Presión en la boca de riego (PBR)

P0 γ

PBR =

PN + h c + h + Ha ± H g γ tub. Auxiliar

ramal

mangueras

Ø 20 mm Q el del aspersor

Riego por aspersió aspersión DISEÑO HIDRÁULICO Longitud de las mangueras (en su caso) y posición Nº teórico de aspersores Nº real de aspersores Presión en la boca de riego (PBR)

P0 γ

PBR =

PN + h c + h + Ha ± H g γ tub. Auxiliar

ramal

mangueras

Ø 20 mm Q el del aspersor

Riego por aspersió aspersión DISEÑO HIDRÁULICO Ramal con dos diámetros La utilización de varios diámetros suele ser interesante en instalaciones fijas, cuando la tubería es descendente, o cuando se quiere aprovechar al máximo la pérdida de carga disponible, ya que con ello se consigue un mejor control de la presión En riego por aspersión no suele resultar aconsejable utilizar más de dos diámetros distintos en un mismo ramal portaaspersores

Riego por aspersió aspersión DISEÑO HIDRÁULICO Ramal con dos diámetros Esta tubería se calcula normalmente mediante aproximaciones sucesivas, fijando previamente las longitudes de cada tramo (L1 y L2, con n1 y n2 aspersores respectivamente) y comprobando las pérdidas de carga (h1+h2≤h) hasta que se ajusten a las pretendidas

Riego por aspersió aspersión DISEÑO HIDRÁULICO Ramal con dos diámetros

Riego por aspersió aspersión DISEÑO HIDRÁULICO Ramal con dos diámetros

h 1 = h f (Q o , L, D1 ) − h e (Q e , L 2 , D1 ) h 2 = h 2 (Q e , L 2 , D 2 ) h = h f (Q o , L, D1 ) − h e (Q e , L 2 , D1 ) + h 2 (Q e , L 2 , D 2 )

Riego por aspersió aspersión DISEÑO HIDRÁULICO Reguladores de presión

Riego por aspersió aspersión DISEÑO HIDRÁULICO Reguladores de presión

Get in touch

Social

© Copyright 2013 - 2024 MYDOKUMENT.COM - All rights reserved.