Story Transcript
Tema 1: Redes de acceso a Internet. Estructura de Internet MPLS
Tecnologías cableadas
Digital Subscriber Line (xDSL) Cable Broadband Service Broadband Over Power Lines Fiber
Tecnologías inalámbricas Satellite Wireless 3G
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 – http://www.grc.upv.es/docencia/tra/
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
A “nuts and bolts” view of a network Millions of connected computing devices: hosts, end-systems pc‟s workstations, servers PDA‟s phones, toasters
running network apps communication links fiber, copper, radio, satellite
router server
mobile
local ISP
routers: forward packets (chunks) of data thru network protocols: control sending, receiving of msgs
regional ISP
TCP, IP, and HTTP, FTP, PPP, …
2
workstation
company network
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 3
A closer look at the network structure 1. The network edge: applications and hosts 2. The network core: routers network of networks
3. The access networks and physical media: communication links
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
Internet structure: network of networks Roughly hierarchical National/international backbone providers (NBPs) e.g. BBN/GTE, Sprint, AT&T, IBM, UUNet interconnect (peer) with each other privately, or at public Network Access Point (NAPs)
A point of presence (POP) is a machine that is connected to the Internet. Internet Service Providers (ISPs) provide dial-up or direct access to POPs. regional ISPs connect into NBPs
local ISP, company connect into regional ISPs 4
local ISP regional ISP NBP B NAP
NAP NBP A
regional ISP local ISP
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
Network Access Points (NAPs)
Note: Peers in this context are commercial backbones. 5
Source: Boardwatch.com
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
MCI/WorldCom/UUNET Global Backbone
6
Source: Boardwatch.com
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 7
The situation in Europe
See: http://www.redes.upv.es/ralir/en/MforS/GEANT2.WMV Also: http://video.google.com/googleplayer.swf?docId=-4949195951027294198&hl=en-GB More about technolgies: http://video.google.com/googleplayer.swf?docId=-4634094763983277329&hl=en-GB
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 4 8
Hierarchical Routing aggregate routers into regions, “autonomous systems” (AS) routers in same AS run same routing protocol “intra-AS” routing protocol routers in different AS can run different intra-AS routing protocol
Gateway router Direct link to router in another AS
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
Interconnected ASes
3c
3a 3b AS3
2a
1c
1a
1d
1b AS1
Intra-AS Routing algorithm
Inter-AS Routing algorithm
Forwarding table
2c AS2
2b
forwarding table configured by both intra- and inter-AS routing algorithm intra-AS sets entries for internal dests inter-AS & intra-As sets entries for external dests 4-9
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 4 1 0
Intra-AS Routing also known as Interior Gateway Protocols (IGP) most common Intra-AS routing protocols: RIP: Routing Information Protocol OSPF: Open Shortest Path First IGRP: Interior Gateway Routing Protocol (Cisco proprietary)
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 4 1 1
Internet inter-AS routing: BGP BGP (Border Gateway Protocol): the de facto standard BGP provides each AS a means to: Obtain subnet reachability information from neighboring ASs. Propagate reachability information to all AS-internal routers. Determine “good” routes to subnets based on reachability information and policy.
allows subnet to advertise its existence to rest of Internet: “I am here”
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
Why MPLS? Integrate best of Layer 2 and Layer 3 - Intelligence of IP Routing - performance of high-speed switching - Legacy service transport - QoS - VPN Semantics - Link layers include: - Ethernet, PoS, ATM, FR
Note: MPLS and IP could be optimal solution for overall IP Services Architecture.
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
MPLS as a Foundation for Value Added Services
VPNs
Traffic Engineering
IP+ATM
IP+Optical GMPLS
MPLS
Network Infrastructure
Any Transport Over MPLS
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
General Context
• At Edge (ingress): Classify packets Label them
(CE) – Customer Edge
• In Core: Forward using labels (as opposed to IP addr)
Label indicates service class and destination
Edge Label Switch Router (PE) – Provider Edge
Label Switch Router (LSR) (P) – Provider
Label Distribution Protocol (LDP/TDP, RSVP,BGP)
• At Edge (egress): Remove Label
(PE) – Provider Edge
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
Control and Forward Plane Separation
RIB
Routing Process
Route Updates/ Adjacency
Control Plane
LIB
MPLS Process
Label Bind Updates/ Adjacency
Data Plane
LFIB
FIB
MPLS Traffic
IP Traffic
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
MPLS Example: Routing Information
In Address Label Prefix
Out I‟face
Out Label
In Address Label Prefix
Out I‟face
128.89
1
128.89
0
171.69
1
171.69
1
…
…
…
…
Out Label
In Address Label Prefix
Out I‟face
128.89
0
…
…
0
Out Label
128.89
0
1
You Can Reach 128.89 Thru Me You Can Reach 128.89 and 171.69 Thru Me
Routing Updates (OSPF, EIGRP, …)
1
You Can Reach 171.69 Thru Me
171.69
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
MPLS Example: Assigning Labels
In Address Label Prefix
Out I‟face
Out Label
In Address Label Prefix
Out I‟face
Out Label
-
128.89
1
4
4
128.89
0
9
-
171.69
1
5
5
171.69
1
7
…
…
…
…
…
…
…
…
In Address Label Prefix
Out I‟face
Out Label
9
128.89
0
-
…
…
…
…
0 0
1
Use Label 9 for 128.89 Use Label 4 for 128.89 and Use Label 5 for 171.69
Label Distribution Protocol (LDP)
(downstream allocation)
1
171.69
Use Label 7 for 171.69
128.89
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
MPLS Example: Forwarding Packets
In Address Label Prefix
Out I‟face
Out Label
In Address Label Prefix
Out I‟face
Out Label
-
128.89
1
4
4
128.89
0
9
-
171.69
1
5
5
171.69
1
7
…
…
…
…
…
…
…
…
128.89.25.4
Out Label
128.89
0
-
…
…
…
…
0
128.89
0
1
4
Out I‟face
9
MPLS network egress point
128.89.25.4
1
128.89.25.4 Data
In Address Label Prefix
Data Label Switch Forwards Based on Label
9
128.89.25.4
Data
Data
1 9
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
Un ejemplo: ONO
2 0
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
Un ejemplo: ONO
2 1
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
Un ejemplo: ONO
Tecnologías cableadas de acceso time 2010 2005
SHDSL UDSL HDSL
SDSL
VDSL
ADSL
GPRS 2B1Q
VoD
TV digital Voice 4B3T
1995 Power line
ISDN xDSL
POTS
TV analog
1980 Copper
TV
DECT
WLAN
EDGE GSM PDC
CDMA VSAT
WLL Satellite Coax Wireless
BPON
HSCSD
PMP
2000
1990
UMTS
CDMA STM 1 OPAL
Bluetooth AMPS
PON
AON
Cellular radio Fiber optics
1975
Copper 1900
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 – http://www.grc.upv.es/docencia/tra/
2 3
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
Implantación de las diversas tecnologías
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 2 4
What is xDSL DSL: Digital Subscriber Line DSL as a transmission technology using the existing copper wires between a central exchange and a customer with a bit rate speed up to 26 Mbit/s Signals: symmetrical/asymmetrical, digital, text, audio, video Concepts of local loop, management, handshake, interoperability, scalability, legacy
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 2 5
Why x-DSL Faster than analog (56 kbit/s) and ISDN (>128 kbit/s) modems, reasonable cost, reach 3-6 km Less expensive that E1/T1 systems, 1.5-2.0- Mbit/s, reach 1 km Use already existing copper pairs (depending on the performance): start as equipments installed. Transforms potential 700 millions copper wires installed worldwide into multimegabit data pipes
Scenario convenient to providers and users immediately available Enable the management of different providers of different services to different users tipology Alternative: Optical access Wait for full availability current cost better performance
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 2 6
How it works Remove line components limiting the bandwidth to the voice frequency (4 KHz = 64 Kbit/s) Use of copper low attenuation frequencies sending more bits x Hertz for longer reach Use higher bit rate with a low increase of signal rate (baud) in the line Use of line codes allowing the transmission of 2 to 15 bits x Hertz (up to 1.1, 2.2, 12 MHz) Adoption of techniques/phylosophies limiting negative effects (crosstalk, echo, spectrum, etc.)
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
Arquitectura de una red ADSL 192.76.100.7/25 VPI 18, VCI 23, PCR 256/128 Kb/s VPI 18, VCI 31, PCR 512/256 Kb/s
192.76.100.1/25
192.76.100.12/25
Red ATM Red telefónica 192.76.100.15/25
DSLAM (ATU-C) Internet VPI 18, VCI 37, PCR 2048/300 Kb/s
Router-modem ADSL (ATU-R) Ethernet 10BASE-T Bucle de abonado (conexión ADSL) Enlace ATM OC-3 (155 Mb/s) 2 7
Circuito permanente ATM
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 2 9
DSLAM Digital subscriber line access multiplexer A Digital Subscriber Line Access Multiplexer (DSLAM) allows telephone lines to make faster connections to the Internet. It is a network device, located near the customer's location, that connects multiple customer Digital Subscriber Lines (DSLs) to a high-speed Internet backbone line using multiplexing techniques. By locating DSLAMs at locations remote to the telephone company central office (CO), telephone companies are now providing DSL service to consumers who previously did not live close enough for the technology to work.
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
ADSL G.Lite (ITU G.992.2) ADSL requiere instalar en casa del usuario un filtro de frecuencias o „splitter‟ (teléfono de ADSL). El splitter aumenta el costo de instalación y limita el desarrollo. ADSL G.Lite suprime el splitter. También se llama ADSL Universal, ADSL „splitterless‟ o CADSL (Consumer ADSL). Sin splitter hay más interferencias, sobre todo a altas frecuencias.
3 0
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 3 1
ADSL2 versus ADSL (G.992.3 x G.992.1) 2nd generation of ADSL with improvements on:
Loop-reach increase for equivalent bit rates (300m) Higher down/up bit rates loop diagnostics Adjustable spectrum shaping during operat/initializ Power vs traffic control: L0(full),L1, L2 robustness against loop impairments and RFI Improved multivendor interoperability
Improved application support for an all digital mode of operation and voice over ADSL operation;
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
ADSL 2+ : G.992.5 Performance Increase downstream: to 16 Mbit/s Maybe increase in upstream (Oct. 2003) Increase reach (1.5 - 3 Km)
ADSL+ doubles the bandwidth (from 1.1 to 2.2 MHz) with a significant increase of data rates on short loops Backwards compatibility (needs G.992.3)
3 2
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
VDSL (Very high speed DSL) Es el „super-ADSL‟. Permite capacidades muy grandes en distancias muy cortas.
Las distancias y caudales en sentido descendente son: 300 m 1000 m 1500 m
51,84 – 55,2 Mb/s 25,92 – 27,6 Mb/s 12,96 – 13,8 Mb/s
En ascendente se barajan tres alternativas: 1,6 – 2,3 Mb/s 19,2 Mb/s Igual que en descendente (simétrico)
3 3
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
Cable Broadband Service Developed for TV distribution Evolved to provide TV/Data/Voice Up to 15 Mbs download; 2 Mbs upload
Distance independent Register w/ FCC
3 4
Cable Modem
3 5
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
Hybrid Fiber/Coax (HFC) CATV Network
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
Residential access networks: cable modems
3 6 Diagram: http://www.cabledatacomnews.com/cmic/diagram.html
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
Gigabit Passive Optical Network (GPON) Fiber to the Home Architecture
Central Office
Passive Outside Plant
Typically up to 20 km (28 dB)
Edge router (data, video)
2.5 Gbps @ 1490 nm
Multi-dwelling units
splitters points
Small/medium enterprises
1.2 Gbps @ 1310 nm Optical Line Terminal (OLT) Softswitch (for voice)
Optional 1,550 nm to support local analog/digital video if required
Single family homes Optical Network Terminal (ONT)
Source: Fiber to the Home Council 3 7
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 3 8
Objetivos Soporte de todos los servicios: voz (TDM, tanto SONET como SDH), Ethernet (10/100 BaseT), ATM,… Alcance máximo de 20 Km, aunque el estándar se ha preparado para que pueda llegar hasta los 60 km. Soporte de varios bitrate con el mismo protocolo, incluyendo velocidades simétricas de 622 Mb/s, 1.25 Gb/s, y asimétricas de 2.5 Gb/s en el enlace descendente y 1.25 Gb/s en el ascendente. El número máximo de usuarios que pueden colgar de una misma fibra es 64 (el sistema está preparado para dar hasta 128).
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 3 9
Futuro de GPON GPON no requiere de dispositivos electrónicos u optoelectrónicos activos para la conexión entre el abonado y el operador, y por lo tanto supone una inversión y unos costes de mantenimiento menores La mayoría de los grandes operadores actuales se han decantado por la tecnología GPON. En 2007 muchas operadoras han realizado “pruebas piloto” con pocos usuarios. El objetivo de estas pruebas es empezar a vislumbrar las dificultades de trabajar la fibra óptica. A lo largo de 2008 se espera el lanzamiento “masivo” de servicios sobre GPON.
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
Broadband Over Power Lines High Voltage ~ MVolts
Medium Voltage ~ 1kVolts to 40 kVolts
~ 120/240 Volts
Coupler
Power Generatio n Plant
Substation
Backhaul Point (Gateway )
Repeater
LV Distribution Transformer
Access BPL
Internet
4 0
Low Voltage
BPL signals are extracted here & converted into/from traditional communication packets for appropriate communication direction
Aggregation Point
Power Line Interface Device Located In Home
In some Access implementations, these physical links are replaced by wireless links
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
Tecnología PLC: Principios básicos Una idea sencilla: Acondicionar la red eléctrica para la transmisión simultánea de las señales de baja frecuencia (50/60 Hz) para transmisión de energía y alta frecuencia (1-40 MHz) para transmisión de datos Red de Acceso PLC Conexión a otros
Principios básicos
Baja Tensión (BT)
Media Tensión (MT)
operadores CT2
CT1
Termin al
Punto Interconexión
CT3
Repetidor CT4
HE 100 – 300 hogares HE: Equipo PLC en CT
CTn
4 1
CT5
CT6
Repetidor (Instalado en el Cuarto de Contadores) Terminal (Instalado en Casa de Cliente) CT: Centro de Transformación MT/BT
La Red Eléctrica es un medio hostil para la transmisión de datos: derivaciones, malas conexiones, ruido, impedancia variable... Modulaciones robustas: DSSS, GMSK, OFDM No existe ningún estándar, sino un grupo de sistemas diferentes e incompatibles entre sí Velocidades de transmisión de hasta 200 Mbps compartidos entre los usuarios, y dependiendo de la configuración Enchufe eléctrico (Toma única de alimentación, voz y datos.) Permite seguir prestando el suministro eléctrico sin ningún problema Simetría del ancho de banda
El uso de la red eléctrica existente: La principal ventaja de la tecnología PLC y su máximo condicionante Ventajas
Atenuación Attenuationvs. vs Distance, Distancia,PLC cables cables PLC 120
30 MHz
a0 = 2e-3 110
a1 = 8e-6 k=0.5
100
a0 = 2e-3 A(f,d) = e a1 = 8e-6 k=0.5
90 Attenuation Atenuación (dB)
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
Tecnología PLC: Principios básicos
80
k
(a 0 a 1 f
1.6 MHz
10 MHz ( a a f 0 1 A(f,d) = 20 MHz
e
70 60
k
10 MHz
)d
30 MHz
50 40 1.6 MHz
30 20 10 0 0
50
100
150
200
250
Distancia Distance (meters) (metros)
300
Permite gestión y control en Tiempo Real Bi-direccional Aprovecha la infraestructura eléctrica: Alta disponibilidad (Red de MT mallada) Mejora mantenimiento preventivo (medio físico compartido) Rapidez de instalación Coste moderado Total independencia de: • Obra Civil y licencias • Licencias radio • Interferencias • Operadores TELCOM (Internos / Externos)
20 MHz
)d
350
Desventajas
4 2
Densidad Espectral de Media Tensión
Variable en el tiempo Ruido elevado Altas atenuaciones Múltiples reflexiones
Tecnologías inalámbricas de red
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 – http://www.grc.upv.es/docencia/tra/
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
Basics of Satellites Two Stations on Earth want to communicate through radio broadcast but are too far away to use conventional means. The two stations can use a satellite as a relay station for their communication One Earth Station sends a transmission to the satellite. This is called a Uplink. The satellite Transponder converts the signal and sends it down to the second earth station. This is called a Downlink.
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
Basics: Advantages of Satellites The advantages of satellite communication over terrestrial communication are: The coverage area of a satellite greatly exceeds that of a terrestrial system. Transmission cost of a satellite is independent of the distance from the center of the coverage area. Satellite to Satellite communication is very precise. Higher Bandwidths are available for use.
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
Basics: Disadvantages of Satellites The disadvantages of satellite communication: Launching satellites into orbit is costly. Satellite bandwidth is gradually becoming used up. There is a larger propagation delay in satellite communication than in terrestrial communication.
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
Basics: How Satellites are used Service Types Fixed Service Satellites (FSS) Example: Point to Point Communication
Broadcast Service Satellites (BSS) Example: Satellite Television/Radio Also called Direct Broadcast Service (DBS).
Mobile Service Satellites (MSS) Example: Satellite Phones
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
Types of Satellites Satellite Orbits
GEO LEO MEO Molniya Orbit HAPs
Frequency Bands
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
Geostationary Earth Orbit (GEO) These satellites are in orbit 35,863 km above the earth‟s surface along the equator. Objects in Geostationary orbit revolve around the earth at the same speed as the earth rotates. This means GEO satellites remain in the same position relative to the surface of earth. Advantages A GEO satellite‟s distance from earth gives it a large coverage area, almost a fourth of the earth‟s surface. GEO satellites have a 24 hour view of a particular area. These factors make it ideal for satellite broadcast and other multipoint applications.
Disadvantages A GEO satellite‟s distance also cause it to have both a comparatively weak signal and a time delay in the signal, which is bad for point to point communication. GEO satellites, centered above the equator, have difficulty broadcasting signals to near polar regions
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
Frequency Bands Different kinds of satellites use different frequency bands. L–Band: 1 to 2 GHz, used by MSS S-Band: 2 to 4 GHz, used by MSS, NASA, deep space research C-Band: 4 to 8 GHz, used by FSS X-Band: 8 to 12.5 GHz, used by FSS and in terrestrial imaging, ex: military and meteorological satellites Ku-Band: 12.5 to 18 GHz: used by FSS and BSS (DBS) K-Band: 18 to 26.5 GHz: used by FSS and BSS Ka-Band: 26.5 to 40 GHz: used by FSS
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 5 1
Satellite: an example Ofertas de Telefónica España
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
La llegada del 3G
Higher bandwidth enables a range of new applications!! For the consumer Video streaming, TV broadcast Video calls, video clips – news, music, sports Enhanced gaming, chat, location services…
For business
5 2
High speed teleworking / VPN access Sales force automation Video conferencing Real-time financial information
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
GSM evolution to 3G
High Speed Circuit Switched Data Dedicate up to 4 timeslots for data connection ~ 50 kbps Good for real-time applications c.w. GPRS Inefficient -> ties up resources, even when nothing sent Enhanced Data Rates for Global Not as popular as GPRS (many skipping HSCSD) GSM Evolution HSCSD 9.6kbps (one timeslot) Uses 8PSK modulation GSM Data 3x improvement in data rate on short Also called CSD distances Can fall back to GMSK for greater distances GSM GPRS Combine with GPRS (EGPRS) ~ 384 kbps Can also be combined with HSCSD WCDMA General Packet Radio Services Data rates up to ~ 115 kbps EDGE Max: 8 timeslots used as any one time Packet switched; resources not tied up all the time Contention based. Efficient, but variable delays GSM / GPRS core network re-used by WCDMA (3G) 5 3
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 5 4
Quick Recap of 2G systems: Radio Interfaces Different in air interfaces Modulation and signaling
eg- GSM 900 Uplink: 890-915 MHz Downlink: 935-960 MHz 25MHz -> 124 carrier frequencies, spaced 200kHz apart One or more frequencies per base station ~270 kbps per carrier, divided into 8 channels = ~33kbps per channel
AMPS TACS NMT
IS-54B IS-136
GSM
IS-95 IS-95B WCDMA
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
2G GSM – Core Network (Voice)
SCP Um
BSC
A
TDM ISUP/SS7
BTS
PSTN
HLR
AUC
VLR
EIR
SIM
Mobile Switching Center (MSC)
Home Location Register (HLR)
Visitor Location Register (VLR)
Signaling System No. 7 (SS7)
Phone switch plus: mobile registration call routing inter MSC handovers location updating CDR creation
information of each subscriber, type, service
selected information from the HLR for all mobiles in MSC area
Packet signaling network
Current location of the subscriber
Often bundled with MSC (VLR domain tied in with MSC coverage)
SS7 to PSTN 5 5
Abis
Logically 1 HLR per GSM network
Queries assigned HLR
AuC – Auth. center EIR – Equip ID register SCP – Service control point
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
2G GSM – Mobile Switching Center
MSC Connects to the fixed network (SS7)
BSC
Like a normal PSTN/ISDN switch with added mobile functionality:
BSC
•Registration
BSC
•Authentication •Location
updating
•Handovers
Depending on supplier, and design, urban or rural. About 2-4 BSCs for each MSC About MSC per 200K subscribers Many variables 5 6
•Integrates •Call
VLR
routing to roaming sub…
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 5 7
GPRS…. What is it? General Packet Radio Service 2.5G data service overlaid on an existing GSM network Mobile station uses up to 8 timeslots (channels) for GPRS data connection from Mobile Station Timeslots are shared amongst users (and voice)
Variable performance…
Packet Random Access, Packet Switched Slotted Aloha Reservation / Contention handling Throughput depends on coding scheme, # timeslots etc From ~ 9 kbps min to max. of 171.8 kbps (in theory!)
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
GPRS: General Packet Radio Service
Circuit Switched Um
BTS
SIM
SCP BSC
& PCU
Abis
TDM
A PSTN
Packet Switched Core
FR
HLR
Gb
IP Gn
Packet Control Unit (PCU)
Serving GPRS Support Node (SGSN)
Forward data frames from TDM BSS to packet core
Packet transfer to, from serving area
New hardware in BSC
Registration, authentication, mobility management / handover, CDRs logical links to BTS, tunnel to GGSN
5 8
AUC
Gi
Internet Corporate
Gateway GPRS Support Node (GGSN) Gateway to external IP networks (VPN/ISP etc) IP network security GPRS session mgmt, AAAA CDRs for charging
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
EDGE… also known as 2.75G EDGE Enhanced Data Rates for Global Evolution Uses 8-PSK modulation in good conditions Increase throughput by 3x (8-PSK – 3 bits/symbol vs GMSK 1 bit/symbol) Fall back to GMSK modulation when far from the base station Combine with GPRS: EGPRS; up to ~ 473 Kbps. NB: GPRS & EGPRS can share time slots
New handsets / terminal equipment; additional hardware in the BTS Core network and the rest remains the same TDMA (Time Division Multiple Access) frame structure 200kHz carrier bandwidth allows cell plans to remain Initially no QoS; later GSM/EDGE Radio Access Network (GERAN) QoS added
5 9
EDGE access develops to connect to 3G core
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010 6 0
3G Standards groups for UMTS/WCDMA 3G development work has been driven by ETSI, UMTS Forum WCDMA is the main 3G radio interface (driven initially by DoCoMo) 3GPP = 3G Partnership Program Produces specs for 3G system based on ETSI UTRA (Universal Terrestrial Radio Access Interface) Also develops further enhancements for GSM/GPRS/EDGE Several org partners including ETSI, CWTS – China Wireless Telecommunications Standards www.3gpp.org – eg- Juniper is an active member and contributor
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
Mobile Networks Evolution
Download Speed
250-384 kbps
UMTS
90-180 kbps 40 kbps
1995 6 1
HSDPA
1-10 Mbps
EDGE GPRS 2005
2015
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
3G = new network GSM/GPRS Radio network
2G SGSN
Packet switched Core network 3G SGSN
GGSN External IP network
PCU
BSC
GSM GPRS UMTS/ HSDPA
HLR
UMTS/HSDPA Radio network RNC
2G MSC
3G MSC
GMSC External voice network
6 2
Circuit switched Core network
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
…and Beyond Technology Convergence on OFDM (Orthogonal Frequency Division Multiple Access) WIMAX Standardized by IEEE 802.16, evolution of 802.11 (Wi-Fi) Improved bandwidth, encryption and coverage over WiFi Theoretical peak data rates of 70Mbps (practical peak ~2Mbps)
Improved QoS better enables applications such as VoIP or IPTV Ideal application is for “last mile” connectivity to the home or business Intel plans to embed WiMAX chips as part of „Intel Inside‟
L3GTE/HSOPA
6 3
Early standardization work starts in 3GPP R8 Improved bandwidth, latency over UMTS/HSxPA Radio technology based on MIMO-OFDM, peak data rates of up to 70Mbps Network simplification
EV-DO DO+, EV-DV DV+ HSDPA Enhanced UL (R6/R7)
Wide Area Mobile
Cellular Industry 2G
2.5G
3G
4G Air Interfaces HSDPA 3.5G
Mobile Broadband
TDD
Fixed Wireless Industry
802.16e (Mobile)
Metro Area Nomadic
Coverage/Mobility
TECNOLOGÍAS DE RED AVANZADAS – Master IC 2009-2010
Cellular/Fixed: Worlds Converge
802.16a/d (Fixed NLOS)
Local Area Fixed
802.11n (smart antennas) 802.11 with Mesh extns. 802.16 (Fixed LOS)
802.11 b/a/g
Fixed Wireless Industry Data Speeds (Kbps) span a wide range
6 4
10
100,000