TEMA 8. SISTEMAS TRIFÁSICOS

TEMA 8. SISTEMAS TRIFÁSICOS 8.1.- Ventajas de los sistemas trifásicos. 8.2.- Generación de tensiones trifásicas. 8.3.- Receptores en los sistemas trif

1 downloads 153 Views 748KB Size

Recommend Stories


TEMA 8. CIRCUITOS COMBINACIONALES
TEMA 8. CIRCUITOS COMBINACIONALES http://www.tech-faq.com/wp-content/uploads/images/integrated-circuit-layout.jpg IEEE 125 Aniversary: http://www.fl

TEMA 8 CONTAMINACIÓN ATMOSFÉRICA
TEMA 8 CONTAMINACIÓN ATMOSFÉRICA El gran logro de la humanidad no fue conseguir que nuestras zonas rurales mueran, sino que las zonas urbanas poblad

TEMA 8: LOS RECURSOS
TEMA 8: LOS RECURSOS. 1. EL MEDIO AMBIENTE COMO RECURSO PARA LA HUMANIDAD. LOS RECURSOS: CONCEPTO Y TIPOS 1.1. Concepto de Recurso Es todo material, p

Tema 8: Realismo Visual
Introducci´ on Trasparencia Reflejos Sombras Tema 8: Realismo Visual J. Ribelles SIE020: S´ıntesis de Imagen y Animaci´ on Institute of New Imaging

Tema 8: Reino plantas
Tema 8: Reino plantas. 1 Tema 8: Reino plantas. por Concepción Rodríguez-Rey y Paloma Chapuli. Índice de contenido Plantas autótrofas y animales he

TEMA 8 GEOMETRÍA ANALÍTICA
Tema 8 – Geometría Analítica – Matemáticas 4º ESO 1 TEMA 8 – GEOMETRÍA ANALÍTICA RELACIÓN ENTRE PUNTOS DEL PLANO EJERCICIO 1 : Halla el punto medio

Story Transcript

TEMA 8. SISTEMAS TRIFÁSICOS 8.1.- Ventajas de los sistemas trifásicos. 8.2.- Generación de tensiones trifásicas. 8.3.- Receptores en los sistemas trifásicos. A) Receptor equilibrado en triángulo. B) Receptor desequilibrado en triángulo. C) Receptor equilibrado en estrella con neutro. D) Receptor equilibrado en estrella sin neutro. E) Receptor desequilibrado en estrella con neutro F) Receptor desequilibrado en estrella sin neutro 8.4.- Fuentes trifásicas reales. 8.4.1.- Conversión de fuentes trifásicas reales. 8.4.1.1.- Conversión Triángulo-Estrella. 8.4.1.2.- Conversión Estrella-Triángulo. 8.5.- Estudio generalizado de los sistemas trifásicos. 8.5.1.- Sistemas Estrella-Estrella. 8.5.2.- Sistemas Estrella-Triángulo. 8.5.3.- Sistemas Triángulo-Estrella. 8.5.4.- Sistemas Triángulo-Triángulo.

Fr. Casares /2011 / 11

TEMA 8 SISTEMAS TRIFÁSICOS Anteriormente se ha tratado los circuitos monofásicos, y cómo se puede generar una tensión alterna senoidal cuando una bobina se mueve dentro de un campo magnético. La aparición de esta única onda alterna, hace que se denomine esta máquina: GENERADOR MONOFÁSICO. Si el número de bobinas en el rotor se incrementa de una forma especial, el resultado es un generador polifásico que produce más de una onda alterna en cada revolución. 1 RECEPTOR G 2'

2

MONOFASICO

Generador Monofásico 1 G

R

2 S

Fase

T

Fase

3

1'

Fase

RECEPTOR 2' 3'

TRIFASICO

N'

Neutro Generador

En este capítulo se estudiará únicamente los sistemas trifásicos que son los que con más frecuencia se utilizan en la generación, transporte y distribución de energía eléctrica.

8.1.- VENTAJAS DE LOS SISTEMAS TRIFÁSICOS a)

Una línea monofásica sometida a una tensión U y recorrida por una intensidad I con un factor de potencia cos n, transmite una potencia media dada por P = U I Cos n. Si a esta línea le añadimos un tercer hilo tendremos una línea trifásica que transmite entonces una

8-1

potencia PT '

3 U IT cos n (según se vera posteriormente). Es decir, con un

incrementó de solo el 50 % en el coste de los conductores de la línea, se aumenta la capacidad de transmisión de potencia en un 73 %. Ahora bien, si lo que se pretende es transportar una determinada energía a una cierta tensión el sistema trifásico es más económico que el sistema monofásico a igualdad de potencia a transmitir e igualdad en las pérdidas por efecto Joule en la línea, ya que se obtiene un ahorro en peso de material conductor de un 25%. 1'

1

2'

2 Generador

1

1'

S

2

2'

T

3

3'

RECEPTOR

RECEPTOR G

R G

CENTRO DE CONSUMO

Generador

Linea de Transporte

Linea de Transporte

L metros RM

XM

1

L metros RT

1'

U 2

XM

XT

1

IM

RM

CENTRO DE CONSUMO

2

RECEPTOR cos ϕ

RT

XT

RT

XT

1' IT

U RECEPTOR

I T 2'

cos ϕ

3

I M 2'

I T 3' P = U I cos ϕ

P = 3 U I M cos ϕ

M

Ciertamente, si yo quiero alimentar a un receptor que consume una potencia P, que tiene un factor de potencia fijo, cos n, a una tensión dada, las pérdidas de energía (PP) en la línea por efecto Joule serán: 2

Para el sistema monofásico: PP,M ' 2 RM IM ' Para el sistema trifásico:

2

PP,T ' 3 RT IT '

2ρL 2 IM SM

3ρL 2 IT ST

Esto es debido a que la resistencia total de un hilo conductor de resistividad ρ, longitud L y sección S, vale: R = ρ L /S. Para una potencia consumida determinada, lógicamente si yo quiero sustituir un tipo de línea por otro, será considerando que las pérdidas son iguales: 2ρL 2 3ρL 2 IM ' IT SM ST

—>

8-2

2 2 3 2 IM ' IT SM ST

(1)

debido a que se ha supuesto que estamos transportando la misma energía, de las formulas de la potencia monofásica y trifásica igualandolas se obtendrá que IM ' 3 IT , la cual sustituyendola en (1) se obtendrá que:

ST '

SM 2

con lo cual el volumen de material conductor en las diferentes líneas sera: * Vol. línea trifásica: 3 ST L * Vol. línea monofásica: 2 SM L = 4 ST L donde ya se puede observar que en una línea trifásica, con las condiciones impuestas, el ahorro de peso en material conductor es del 25%. b)

La potencia instantánea de un sistema trifásico es constante independiente del tiempo lo que implica en los motores, de C.A. trifásicos, un par motor uniforme, lo que evita vibraciones y esfuerzo en el rotor de los motores de C.A. trifásicos.

1'

1' RECEPTOR

2'

2'

MONOFASICO

3'

p(t) ' P (1% sen (2ωt & π/2)) & UI sen n sen (2ωt) Pot. Instantánea dependiente del tiempo

RECEPTOR TRIFASICO

p(t) ' 3 U I cos n Pot. Inst. Cte

c)

Los motores TRIFÁSICOS pueden arrancar por sí mismos; sin embargo los motores monofásicos necesitan de dispositivos especiales para conseguir su arranque.

d)

Permite el empleo de los motores trifásicos asíncronos, que son los receptores más utilizados, y son dentro del grupo de los motores los más económicos y robustos que se conocen.

8-3

8.2.- GENERACIÓN DE TENSIONES TRIFÁSICAS Como ya se explico en un tema anterior, en los terminales de una espira o conjunto de ellas que giran con velocidad uniforme ω (rad/s) en el seno de un campo magnético de inducción B (cte) se induce una fuerza electromotriz de valor: e'&N

dΦ ' N ω B S sen (ωt) ' E0 sen ωt dt

siendo E0 = N B S ω Si colocamos tres espiras desfasadas entre si 120º en el campo magnético uniforme y girando con velocidad ω (rad/s) la f.e.m. inducida en las tres bobinas iguales tendrán por expresión: eA ' E0 sen ωt eB ' E0 sen (ωt &

2 π) 3

eC ' E0 sen (ωt &

4 π) 3

N

A S

B

C

C

B

S

B A

A B

C

N

S B C A

8-4

Cada devanado en el que se produce una tensión alterna senoidal se denomina FASE y a este tipo de generador se le denomina TRIFÁSICO. Se puede observar que en cualquier instante de tiempo se cumple eA + eB + eC = 0 La representación de este tipo de sistema trifásico simétrico formado por tres tensiones senoidales del mismo valor eficaz, la misma frecuencia y desfasadas entre si 120º será: ¯ ' E A

E0

¯ ' E B

*0

2

E0 2

¯ ' E C

* &120

E0

* 120

2

o bien gráficamente:

E

eA

e

B

e

C

C

EA

ωt E

B

¯ %E ¯ %E ¯ '0 y se cumple que E A B C La SECUENCIA DE FASE es el orden en el que se suceden los valores máximos de las tensiones de cada una de las fases de un generador trifásico. En lo sucesivo las notaciones que se emplearán para las fases serán numéricas E1, E2 y E3 identificadas por EA, EB y EC. Las ondas de las f.e.m. se suceden según el orden A, B y C por consiguiente la secuencia es: Secuencia Directa 8-5

La secuencia inversa se obtiene si se hace girar las bobinas del generador en sentido contrario y por consiguiente se suceden los valores máximos según el orden A, C y B con notación numérica: Secuencia Inversa

Por convenio los FASORES REPRESENTATIVOS DE LAS TENSIONES o f.e.m. de fases para la secuencia directa e inversa se representa en las siguientes figuras

U1 = E 1

U1 = E 1 Secuencia Directa

Secuencia Indirecta

120

120

120

120

120 U3 = E 3

120 U2 = E 2

U3 = E 2

U2 = E 3

Representación de los fasores tensión o f.e.m. de un sistema trifásico Las 3 bobinas del generador trifásico (3 fases) se representan por 3 fuentes de tensión de igual valor eficaz pero desfasadas 120º: ¯ = U * 90 ¯ ' U' E 1 1 F

;

¯ ' U' ¯ = U * &30 E 2 2 F

¯ ' U' ¯ = U * &150 ; E 3 3 F

y si cada una de ellas se utiliza para alimentar impedancias de carga Z1, Z2 y Z3 tal como se muestra en la figura siguiente (circuito trifásico independiente) es evidente que este sistema requiere 6 conductores y las intensidades son: + E1

I1

Z1

ϕ1

+

I2

Z2

E2

ϕ2

+ E3

I3

Z3

ϕ3

(Se consideran despreciables: - la impedancia de la línea que une los generadores con las cargas - la impedancia interna del generador). 8-6

¯I ' 1

¯ E 1

¯I ' 2

¯ Z 1

¯ E 2

¯I ' 3

¯ Z 2

¯ E 3 ¯ Z 3

1

E1

Z 1

1

3

Z2

E3

2

Z

E2

3

2 3

L

¯ ' Z ¯ ' Z ¯ ' Z *n resulta que Si Z 1 2 3 ¯I ' 1 ¯I ' 2 ¯I ' 3

¯ E 1 Z *n ¯ E 2 Z *n ¯ E 3 Z *n

'

'

'

UF *90o Z *n

UF

'

UF *&30o Z *n UF *&150o Z *n

*90o&n ' IF *90&n

Z '

'

UF Z

*&30o&n ' IF *&30&n

UF Z

*&150o&n ' IF *&150&n

en este caso, las tensiones e intensidades forman un sistema simétrico con desfase entre estas dos magnitudes igual al ángulo n (ver la siguiente figura). Y se cumple para las intensidades *¯I1* ' *¯I2* ' *¯I3* = UF / Z ¯I % ¯I % ¯I ' 0 1 2 3 i1(t) % i2(t) % i3(t) ' 0 (en valores instantáneos). Este sistema trifásico, donde la intensidades están desfasadas entre si 120º y las tensiones de fase también se denomina EQUILIBRADO en tensiones y en intensidades.

8-7

U'1 = E 1 I1

ϕ I3

ϕ ϕ U'3 = E 3

U'2 = E 2

I2

Diagrama de tensiones e intensidades de un sistema equilibrado en tensiones e intensidades.

L

¯ … Z ¯ … Z ¯ se tendrá que: Si Z 1 2 3 ¯I ' 1

¯I ' 2

¯I ' 3

¯ E 1 Z1 *n1 ¯ E 2 Z2 *n2 ¯ E 3 Z3 *n3

'

'

'

UF *90o Z1 *n1

' I1 *90&n1

UF *&30o Z2 *n2 UF *&150o Z3 *n3

' I2 *&30&n2

' I3 *&150&n3

donde observamos que *¯I1* … *¯I2* … *¯I3* e

¯I % ¯I % ¯I … 0 . 1 2 3

El sistema trifásico resultante es EQUILIBRADO en tensiones (por que sus tensiones forman 120º y tienen igual valor eficaz) y DESEQUILIBRADO en intensidades (las intensidades resultantes no forman 120º, ni tienen igual valor eficaz).

8-8

U'1 = E 1 I1

ϕ1 I3

ϕ3 U'2 = E 2

ϕ2 U'3 = E 3

I2

Diagrama de tensiones e intensidades de un sistema equilibrado en tensiones y desequilibrado en intensidades.

L

A partir del esquema anterior de distribución de cargas monofásicas sobre los tres

generadores de tensiones alternas senoidales, si solo se utiliza un conductor de retorno de las intensidades, las tensiones en bornes de las cargas no varían y por lo tanto tampoco las intensidades que circulan por los conductores, de esta forma nos queda que podemos alimentar a estas tres cargas monofásicas con solo cuatro conductores en lugar de seis.

1'

1

R

+

I1

E1

Z I 1 + I 2 + I 3= I

N E3 3

+

E2

+

2

I2

N

N'

I3

S 3' T I3

Conexión de un sistema estrella-estrella

8-9

1

Z2

Z

3 2'

Si

¯ ' Z ¯ ' Z ¯ entonces ¯I % ¯I % ¯I ' 0 Z 1 2 3 1 2 3

y en consecuencia el conductor de

retorno no conduce corriente, por lo que en estos casos donde las cargas sean iguales se puede prescindir del conductor de retorno, con lo que nos quedaría solo tres hilos para alimentar a las cargas monofásicas. Vamos a hacer una serie de definiciones a partir de este esquema:

P

Por convenio internacional a las fases 1, 2 y 3 se les llama fases R, S y T y al conductor de retorno Neutro N.

P

Se llaman tensiones SIMPLES, a las representadas por los fasores ¯ , U ¯ ¯ U 1N 2N y U3N y que tienen como valores ¯) ' U ¯ ' U * 90o U 1 1N F ¯) ' U ¯ ' U * & 30o U 2 2N F ¯) ' U ¯ ' U * & 150o U 3 3N F Si el generador y las cargas están unidos por una línea que consideramos en principio con impedancia nula se cumplirá: ¯ ' U ¯ ) ), U ¯ ' U ¯ ) )yU ¯ ' U ¯ ) ) U 1N 1N 2N 2N 3N 3N En principio consideramos que las tensiones simples son iguales en la generación y en el sistema receptor.

P

Se denominan CORRIENTES DE FASE a las que circulan por cada una de las cargas y CORRIENTES DE LÍNEA a las corrientes que circulan por la línea. ¯ ' Z ¯ ' Z ¯ 'Z ¯ se tendrá que En el caso de una carga en estrella, si Z 1 2 3

8 - 10

*¯I F* ' *¯I L* ' *¯I1* ' *¯I2* ' *¯I3* ¯I ' 1

¯) U 1

¯I ' 2

,

Z*n

¯) U 2 Z*n

,

¯I ' 3

¯) U 3 Z*n

¯I ' ¯I % ¯I % ¯I ' 0 N 1 2 3 (los fasores ¯I1, ¯I2 e ¯I3 forman un sistema simétrico de intensidades).

P

Se llaman tensiones COMPUESTAS o DE LÍNEA, las tensiones medidas entre dos conductores de fase, o sea: ¯ 'U ¯ 'U ¯ U 12 RS 3

¯ 'U ¯ 'U ¯ U 23 ST 1

¯ 'U ¯ 'U ¯ U 31 TR 2

R + = U 1N = U RS = N

3

+

= U 2N

= U 3N

+

=

2

U TR = S

= U ST =

siendo:

¯ ' U ¯ &U ¯ ' U ¯)&U ¯) ' U ¯ U 12 1N 2N 1 2 3 ¯ ' U ¯ &U ¯ ' U ¯)&U ¯) ' U ¯ U 23 2N 3N 2 3 1 ¯ ' U ¯ &U ¯ ' U ¯)&U ¯) ' U ¯ U 31 3N 1N 3 1 2 y por tanto:

8 - 11

¯ ' U * 90o & U * & 30o ' 3 U * 120o ' U ¯ U 12 F F F 3 ¯ ' U * & 30o & U * & 150o ' 3 U * 0o ' U ¯ U 23 F F F 1 ¯ ' U * & 150o & U * 90o ' 3 U * & 120o ' U ¯ U 31 F F F 2 Se tendrá: a)

La tensión entre fases activas o TENSIÓN COMPUESTA es 3 veces MAYOR que la tensión SIMPLE o tensión entre fase y neutro.

b)

La tensión compuesta U12 adelanta 30º con respecto a la tensión simple U'1. Igual ocurrirá con la tensión U23 respecto de U'2 y con la tensión U31 respecto de U'3. Las tensiones de línea forman un sistema simétrico de tensiones adelantado 30º respecto a las tensiones simples que comienzan por el mismo índice.

- U'2

U3

U'1 30

U1 30

U'3

30

- U'3 U'2

- U'1

U2 Representación gráfica de los fasores tensiones simples y compuestas

8 - 12

La conexión que define al sistema trifásico es la tensión entre fases o compuesta. Así, por ejemplo, si se dice que la tensión de una línea trifásica es de 380 V, deberá entenderse que 380 V es la tensión existente entre cada dos fases del sistema considerado. En la actualidad se tiende a generalizar el nivel de tensiones: 400/230 V, es decir: 400 V de tensión compuesta y 400/ 3 = 230 V de tensión simple, frente al nivel 380/220V utilizado años atrás (380 V de tensión compuesta y 380/ 3 = 220 V de tensión simple).,o al todavía mas antiguo el nivel 220/127 V (220 V de tensión compuesta y 220/ 3 = 127 V de tensión simple). Un sistema trifásico de 4 hilos permitirá la conexión de cargas: a) Entre fase y neutro. b) Entre fase y fase. c) Cargas trifásicas. En las figuras puede verse la realización de las conexiones indicadas. En (I) se indica la conexión de una carga MONOFÁSICA entre Fase y Neutro (Tensión simple) y entre Fase y Fase (Tensión compuesta). En (II) se ha representado una carga trifásica conectada en ESTRELLA cuyo punto neutro está unido al conductor neutro del sistema. 1 (R) 2 (S) 3 (T) N Z

Z

CARGA

CARGA

MONOFASICA

MONOFASICA

1 (R) 2 (S) 3 (T) N

Z

Z N

8 - 13

Asimismo, se ofrece una conexión trifásica sin unión a neutro a través de un conjunto de cargas agrupadas en TRIANGULO. En los siguientes esquemas se puede observar como una distribución de cargas monofásicas entres las fases es equivalente a una carga trifásica en triangulo, y como una distribución de cargas monofásicas entre fase y neutro es equivalente a una carga trifásica en estrella.

Carga Trifásica en TRIANGULO Receptores 1=R

Generador

1'

2=S

I1

2'

3=T

I2

3'

N

I3

N'

IN U L= U F 1

Fases

Z 12

Z 23

Z 31

1' 1'

I1 2

I 12

Z 12

2'

I2 3

I 23

Z23

I 31 Z 31

3' 3'

I3 Si

Z12 = Z 23 = Z 31 Carga Equilibrada

Si

Z12 = Z 23 = Z 31 Carga Desequilibrada

8 - 14

Normalmente, los sistemas trifásicos son EQUILIBRADOS en lo que respecta a la generación de las f.e.m. que dan lugar al referido sistema. Si, además, las cargas trifásicas que se conecten son rigurosamente iguales, se tendrá un sistema EQUILIBRADO (lo será en generación y en cargas). Un sistema que alimente cargas trifásicas desiguales o monofásicas no adecuadamente compensadas se dirá que es DESEQUILIBRADO.

Carga Trifásica en ESTRELLA - Con Neutro - Sin Neutro 1=R

Receptores 1'

2=S

I1

2'

3=T

I2

3'

N

I3

N'

N'

IN I L= I F

1

Fases

Z1

I1

2'

3

I2

3'

I3

Neutro

Z3

1'

2

N

Z2

Z1 N'

Z3

Z2 N'

IN

Si

Z1 = Z 2 = Z 3 Carga Equilibrada

Si

Z1 = Z 2 = Z 3 Carga Desequilibrada

8 - 15

8.3.- RECEPTORES EN LOS SISTEMAS TRIFÁSICOS Vamos a estudiar el comportamiento de los receptores trifásicos, considerando para ello los siguientes casos: A. B. C. D. E. F.

Receptor equilibrado en triángulo (∆). Receptor desequilibrado en triángulo (∆). Receptor equilibrado en estrella (Y) con neutro. Receptor equilibrado en estrella (Y) sin neutro. Receptor desequilibrado en estrella (Y) con neutro. Receptor desequilibrado en estrella (Y) sin neutro.

Para que un receptor esté equilibrado, debe producir en las líneas de alimentación, corrientes iguales y desfasadas entre sí ángulos de 120o, lo que implica la igualdad de módulos y argumentos de las impedancias. A.- RECEPTOR EQUILIBRADO EN TRIÁNGULO ∆ Suponemos que las tensiones de línea son conocidas y están equilibradas: o ¯ , U ¯ ¯ U 12 23 y U31 (fasores de igual modulo y desfasados 120 )

Para este tipo de carga se cumple que: TENSIONES DE LÍNEA = TENSIONES DE FASE. 1

1'

I1

= =

2

=

1'

I 12 2'

I2

3

I 23

Z 12 Z23

I 31 Z 31

3' 3'

I3 Si Z12 = Z 23 = Z 31 = Z

Carga Equilibrada

Por ser un receptor equilibrado resulta que las intensidades de fase valdrán:

8 - 16

¯I ' 12 ¯I ' 23 ¯I ' 31

¯ U 12 Z *n ¯ U 23 Z *n ¯ U 31 Z *n

'

'

'

¯ * *120o *U L

' IF *120&n

Z *n ¯ * *0o *U L Z *n

' IF *&n

¯ * *&120o *U L Z *n

' IF *&120o&n

se puede observar que : *¯I12* ' *¯I23* ' *¯I31* y están desfasadas 120o. Las intensidades de fase están desfasadas un ángulo n respecto a las tensiones compuestas. En el nudo 1' aplicando 1º Lema Kirchhoff ¯I1 % ¯I31 ' ¯I12 por lo que ¯I ' ¯I & ¯I ' 1 12 31

3 IF *120&n&30 '

3 IF * 90 & n

y en los demás nudos tendremos: ¯I ' ¯I & ¯I ' 2 23 12

3 IF *&30&n

¯I ' ¯I & ¯I ' 3 31 23

3IF *&150&n

vemos que

IL '

siendo: IL = Intensidad de línea.

3IF

U 3 = U 12 U1 = E 1 30

I3

I1

ϕ ϕ

I 12

I 12

30

- I 31

I 31

U 1 = U 23

ϕ

ϕ ϕ U3 = E 3

I 23

U2 = E 2

ϕ

U 2 = U 31 I2 Diagrama de tensiones e intensidades correspondiente a un triangulo de impedancias equilibrado

8 - 17

Ejercicio: Un sistema de secuencia directa ABC y tensión 380 V alimenta tres impedancias ¯ ' 10 *30o , conectadas en triángulo. Determinar las corrientes de fase y línea y iguales: Z dibujar el diagrama fasorial.

1

1'

1'

I1

=

I 12

=

2

2'

Z Z

I2

=

I 31

Z

I 23

3

3' 3'

I3 Triangulo Equilibrado

Solución: Las tensiones compuestas o de línea ¯ ' 380 *120o valen: U 12

U 3 = U 12

I1

U1 30

ϕ

= 30 º

¯ ' 380 *0o U 23 ¯ ' 380 *&120o U 31

U 1 = U 23

Por lo que las intensidades de fase serán:

I3

ϕ U3

¯I ' 12

¯I ' 23

¯I ' 31

¯ U 12 ¯ Z ¯ U 23 ¯ Z ¯ U 31 ¯ Z

'

'

'

380 *120o 10 *30

o

380 *&0o 10 *30

o

' 38 *90o

10 *30

I2

U 2 = U 31

' 38 *&30o

380 *&120o o

U2

ϕ

' 38 *&150o

–>

IF ' *¯I12* ' *¯I23* ' *¯I31*

y las de línea, según se ha visto en la teoría anterior, valdrán: ¯I ' 1

3IF *90&30o '

¯I ' 2

3IF *&30&30o '

¯I ' 3

3IF *&150&30o '

3@38 *60o 3@38 *&60o 3@38 *&180o

8 - 18

B.- RECEPTOR EN TRIÁNGULO DESEQUILIBRADO 1

1'

I1

=

I 12

=

2

1'

Z 12

2'

I2

=

I 23

3

Z23

I 31 Z 31

3' 3'

I3 Si

Z12 = Z 23 = Z 31 Carga Desequilibrada

¯ , U ¯ , U ¯ 6 Sistema simétrico de tensiones U 12 23 31 que como sabemos valdrán: ¯ ' U *120o U 12 L

;

¯ ' U *0o U 23 L

¯ ' U *&120o ; U 31 L

Las intensidades de fase serán:

¯I ' 12

¯I ' 23

¯I ' 31

¯ U 12 Z12 *n12 ¯ U 23 Z12 *n23 ¯ U 31 Z31 *n31

'

'

'

UL *120o Z12 *n12 UL *0o Z23 *n23

' *¯I12* *120&n12

' *¯I23* *0o&n23

UL *&120o Z31 *n31

' *¯I31* *&120o&n31

y las de línea tendrán por valor: ¯I ' ¯I & ¯I 1 12 31 ¯I ' ¯I & ¯I 2 23 12 ¯I ' ¯I & ¯I 3 31 23

8 - 19

U 3 = U 12

I1

I 12

I 12

ϕ 12 - I 31

I3 I 31

ϕ 23 ϕ 31

U 1 = U 23

I 23

- I 12 I2

I 23

U 2 = U 31

Diagrama de tensiones e intensidades correspondiente a un triangulo de impedancias desequilibrado

C.- RECEPTOR EQUILIBRADO EN ESTRELLA CON NEUTRO 1

1' I1

U 12

Z

ϕ

Z

2 U 23 3

ϕ

N'

IN U 31

Z

U'1

ϕ 3'

U'2

I2

2'

I3

En estos receptores se cumple:

8 - 20

U'3

INTENSIDADES DE LÍNEA = INTENSIDADES DE FASE TENSIÓN DE FASE (EN LA CARGA) = TENSIÓN SIMPLE (EN LA GENERACIÓN) Las intensidades de línea serán:

¯I ' 1

¯I ' 2

¯I ' 3

¯) U 1

'

¯ Z ¯) U 2

'

¯ Z ¯) U 3

'

¯ Z

UF *90o Z *n

UF

'

UF *&30o Z *n

*90&n ' IF *90&n ' IL *90&n

Z '

UF *&150o Z *n

'

UF Z UF Z

*&30&n ' IF *&30&n ' IL *&30&n

*&150&n ' IF *&150&n ' IL *&150&n

se observa que UF

I1 ' I2 ' I3 ' IF ' IL '

Z

U 3 = U 12

U'1 30

I1

ϕ

I3

ϕ U'3

30 30

U 1 = U 23

ϕ I2

U'2

U 2 = U 31 Diagrama de tensiones e intensidades correspondientes a una estrella de impedancia equilibrada con neutro y sin neutro.

8 - 21

Aplicando Kirchhoff al nudo N' tendremos: ¯I % ¯I % ¯I % ¯I ' 0 N 1 2 3 ¯I ' & ( ¯I % ¯I % ¯I ) ' 0 N 1 2 3

por lo que

En estos receptores se cumple:

¯ * ' *U ¯ * ' *U ¯ * ' U ' *U 12 23 31 L

UL '

3UF '

3UF

)

)

¯ * ' 3*U ¯ * ' 3*U 1 2

)

¯ * 3*U 3

D.- RECEPTOR EQUILIBRADO EN ESTRELLA SIN NEUTRO 1'

1 I1 U 1'N'

U 12

Z U 31

Z

ϕ

N'

ϕ

Z

3'

2 U 23 3

ϕ

I2

2'

U 2'N'

U 3'N'

I3

En el caso anterior por el neutro no circula corriente, esto implica que UN'N = 0, independientemente si el conductor neutro tiene impedancia o no, luego si elimino el conductor neutro se tendrá: ¯ ) )'U ¯ %U ¯ )'U ¯ ' U' ¯ U 1N 1N NN 1N 1 ¯ ) )'U ¯ %U ¯ )'U ¯ ' U' ¯ U 2N 2N NN 2N 2 ¯ ) )'U ¯ %U ¯ )'U ¯ ' U' ¯ U 3N 3N NN 3N 3 por lo que

8 - 22

¯ ) )* ' * U ¯ ) )*'*U ¯ ) )*'U *U 1N 2N 3N F y las intensidades de fase y de línea serán:

¯I ' 1

¯I ' 2

¯I ' 3

¯ U 1'N' ¯ Z ¯ U 2'N' ¯ Z ¯ U 3'N' ¯ Z

'

'

'

¯ ' U 1 ¯ Z ¯ ' U 2 ¯ Z ¯ ' U 3 ¯ Z

'

'

'

¯ *90o U F Z *n

UF

'

¯ *&30o U F Z *n

Z '

¯ *&150o U F Z *n

'

* *90 & n ' IF *90 & n ' IL *90 & n

UF Z

* *&30 & n ' IF *&30 & n ' IL *&30 & n

UF Z

* *&150 & n ' IF *&150 & n ' IL *&150 & n

Es igual que en el caso anterior en lo que se refiere al calculo de las intensidades. Si aplicamos el primer lema de Kirchhoff al nudo N' resulta: ¯I % ¯I % ¯I ' 0 . 1

2

3

Por lo que el diagrama de tensiones e intensidades en cargas en estrella equilibrada es el mismo con neutro que sin neutro. Los diagramas de tensiones e intensidades de los receptores A, C y D ponen de relieve que las intensidades de línea ¯ I , ¯ I e ¯ I están 1

2

3

desfasadas un ángulo (n n) respecto a las tensiones simples ¯ ), U ¯) y U ¯ ) , respectivamente, en cargas trifásicas equilibradas en U 1 2 3 triangulo (∆) y estrella (Y) .

E.- RECEPTOR DESEQUILIBRADO EN ESTRELLA CON NEUTRO (en el supuesto que la impedancia del neutro sea nula UNN'=0) 1 I1 U 12

U'1 IN

U 31

Z1 N'

ϕ2

Z2

Z3

3

ϕ3 3'

2 U 23

ϕ1

I2

2'

I

8 - 23

U'2

U'3

Las tensiones simples de la carga serán iguales a las tensiones simples en generación ¯ ¯ ¯ U 2'N' ' U2N ' U'2

¯ ¯ ¯ U 1'N' ' U1N ' U'1 ,

¯ ¯ ¯ U 3'N' ' U3N ' U'3

y

por tanto, las intensidades de línea valdrán:

¯I ' 1

¯I ' 2

¯I ' 3

¯ U 1'N' ¯ Z 1 ¯ U 1'N' ¯ Z 2 ¯ U 3'N' ¯ Z 3

'

'

'

¯ '* *90o *U 1 Z1 *n1

' *¯I1* *90&n1

¯ '* *&30o *U 2 Z2 *n2 ¯ '* *&150o *U 3 Z3 *n3

' *¯I2* *&30&n2

' *¯I3* *&150&n3

U 3 = U 12 U'1

I1

ϕ1

I 1+ I

2

+I3 = - I

N

I3

ϕ3 ϕ2 U'3

U 1 = U 23

I2 I

U'2

U 2 = U 31

Resultan 3 intensidades de línea o de fase de diferente modulo y desfasadas con respecto a las tensiones de fase, en este caso tensiones simples, ángulos diferentes por consiguiente ¯I % ¯I % ¯I … 0 1 2 3 ¯I % ¯I % ¯I % ¯I ' 0 1 2 3 N

–>

¯I ' & (¯I % ¯I % ¯I ) N 1 2 3

8 - 24

F.- RECEPTOR DESEQUILIBRADO EN ESTRELLA Y SIN NEUTRO 1'

1 I1

N'

ϕ2

Z2 U 31

Z1 ϕ1

U'1

U 12

Z3

ϕ3 3'

2 I2

U 23 3

U'2

2'

U'3

I3 Receptor desequilibrado en estrella y sin neutro

El sistema generador es equilibrado en tensiones simples y por consiguiente en tensiones compuestas ¯ ' *U ¯ * *90o Simples: U 1N 1N ¯ ' *U ¯ * *120 Compuestas: U 12 12

¯ ' *U ¯ * *&30o ; U 2N 2N ¯ ' *U ¯ * *0o ; U 23 23

¯ ' *U ¯ * *&150o y U 3N 3N ¯ ' *U ¯ * *&120 y U 31 31

Las tensiones de fase o simples de la carga serán: ¯ … U ¯ ¯ ) ) ' ¯I @ Z U 1N 1 1 1N ¯ ) ) ' ¯I @ Z ¯ … U ¯ U 2N 2 2 2N ¯ ) ) ' ¯I @ Z ¯ … U ¯ U 3N 3 3 3N ¯ ¯ ¯ Las tensiones U 1'N' , U2'N' y U3'N' no forman un sistema simétrico (no tienen igual módulo y no están desfasadas entre sí un ángulo de 120o) al no ser iguales las intensidades de ¯ … Z ¯ … Z ¯ y por consiguiente línea ¯I … ¯I … ¯I y las impedancias de la estrella Z 1

2

3

1

2

¯ * … *¯I Z ¯ ¯¯ *¯I1Z 1 2 2* … *I 3Z3* Para calcular las intensidades de línea aplicamos mallas:

8 - 25

3

1'

1 I1

+

U 1'N'

E1 U 12

N

IA

+ 3

E3

+

ϕ3 3'

U 23

2' IB

I3

¯ ¯ U &Z 2 / /0 12 00 00 ¯ Z ¯ %Z ¯ 000 00U IA ' 0 23 2 30 ¯ %Z ¯ ¯ Z &Z 2 / /0 1 2 00 00 0 ¯ ¯ ¯ 00 &Z Z2%Z3000 2 0

Z1%Z2 U12 /0 / 00 &Z U 000 2 230 IB ' 0 Z

¯ ' E ¯ &E ¯ y U ¯ ' E ¯ &E ¯ siendo: U 12 1 2 23 2 3 Las intensidades de línea en función de las de malla serán: ,

Z3

2 I2

¯I ' ¯I 1 A

N'

ϕ2

Z2

E2

Z 1 ϕ1

¯I ' &¯I 3 B

e

¯I ' ¯I &¯I 2 B A

con lo que las tensiones simples de la carga valdrán ¯ ) ) ' ¯I Z ¯ ¯ ¯ U 1N 1 1 ' I A Z1 ¯ ) ) ' ¯I Z ¯ ¯ ¯ ¯ U 2N 2 2 ' (I B & I A) Z2 ¯ ) ) ' ¯I Z ¯ ¯ ¯ U 3N 3 3 ' &I B Z3 ¯ ' U ¯ )) ' U ¯ ) )%U ¯ ) ) ' U *120o U 12 12 1N N 2 L ¯ ' U ¯ )) ' U ¯ ) )%U ¯ ) ) ' U *0o U 23 23 2N N 3 L ¯ ' U ¯ )) ' U ¯ ) )%U ¯ ) ) ' U *120o U 31 31 3N N 1 L

8 - 26

U 2'N'

U 3'N'

En lugar de representar el diagrama de tensiones como una estrella podemos construir el siguiente diagrama en forma de triángulo, donde por convenio hacemos que el vector de referencia apunta su flecha a la letra por el que empieza. Así U12 apunta al terminal 1, UN'N apunta al terminal N'.

U 1'N'

U 1N

U 31

U 12

N'

U 2'N'

U NN'

U 3'N' N U3N

U 2N

3 =3' U ¯ ) ' Desplazamiento del neutro U NN ¯ ) ' U ¯ %U ¯ ) ) ' U ¯ ) )&U ¯ U NN N1 1N 1N 1N ¯ ) ' U ¯ %U ¯ ) ) ' U ¯ ) )&U ¯ U NN N2 2N 2N 2N ¯ ) ' U ¯ %U ¯ ) ) ' U ¯ ) )&U ¯ U NN N3 3N 3N 3N

8 - 27

2 = 2'

Ejercicio: Un sistema trifásico de cuatro conductores de secuencia directa y tensión simple de 200 V alimenta a 3 impedancias: ¯ ' 10 *60o Z 1

¯ ' 10 *0o Z 2

,

y

¯ ' 10 *&30o Z 3

1) Determinar las corrientes de línea y dibujar el diagrama fasorial. 2) Suprimiendo el neutro obtener los valores anteriores y las tensiones en bornas de las impedancias. Solución: 1 1 +

Las tensiones simples serán: U

1N

U U

¯ ) ) ¯ ' 200 *90o ' U U 1N 1N

12

N

3N

¯ ' 200 *&30o ' U ¯ ) ) U 2N 2N

U 31 + 3

2

+ U

¯ ' 200 *&150o ' U ¯ ) ) U 3N 3N

2 2N

y las de línea:

U 23

3

1'

1 I1

¯ ' 200@ 3 *120o U 12

U 12

¯ ' 200@ 3 *0o U 23 ¯ ' 200@ 3 *&120o U 31

U'1 IN

U 31

Z1 N'

ϕ2

Z2

Z3

3

ϕ3 3'

2 U 23

ϕ1

I2 I3

8 - 28

2'

U'2

U'3

Las intensidades de línea valdrán: o ¯ ) ) U ¯I ' 1 N ' 200*90 ' 20 *30o 1 ¯ 10 *60o Z 1 ¯I ' 2

¯I ' 3

¯ ) ) U 2N ¯ Z 2 ¯ ) ) U 3N ¯ Z 3

'

'

200*&30o 10 *0

o

200*&150o 10 *&30

o

' 20 *&30o

' 20 *&120o

La intensidad que circulará por el conductor del neutro será: ¯I ' & (¯I % ¯I % ¯I ) ' 30,12 *144,9o N 1 2 3

U 3 = U 12 U'1

I 1+ I 2+ I 3 = - I

ϕ 1 =60

N

I1

ϕ 2 =0 I2

30 U'3

U'2 I3

U 2 = U 31 Diagrama fasorial de tensiones e intensidades cuando tenemos conductor neutro

Suprimiendo el neutro tendremos:

8 - 29

U 1 = U 23

1'

1 I1 U 12

U'1

U 31

N'

ϕ2

Z2

ϕ1

Z1

Z3

ϕ3 3'

2 I2

U 23 3

U'2

2'

U'3

I3

¯ ' 200@ 3 *120o U 12 ¯ ' 200@ 3 *0o U 23 ¯ ' 200@ 3 *&120o U 31 El sistema de tensiones de líneas es equilibrado pero el sistema de tensiones simples en la carga no lo es. En este caso, las tensiones en bornes de las impedancias NO son las tensiones equilibrada entre fase y neutro. ¯ ) ) y U ¯ ) ) 6 "Sistema no equilibrado" ¯ ) ) , U U 1N 2N 3N 1'

1 I1

+

U 1'N'

E1 U 12

N

IA

+ 3

E3

+

N'

ϕ2

Z2

E2

Z 1 ϕ1 Z3

2

ϕ3 3'

I2 U 23

2' IB

I3

8 - 30

U 2'N'

U 3'N'

10 *60o%10 *0o &10 *0o I U 200 3 *120o 45 45 @ 4 A4 ' 45 45 ' / 12/ 55 5 5 5 5 5 0 0 o 10 *0o%10 *&30o555 555IB555 55 200 3 *0o 55 000U23000 55 &10 *0 5 5 Resolviendo el sistema tendremos que las intensidades de malla valen: /0 00 IA ' 0

&100 3%300j

/0 200 3 18,56&5j000 ' 16,51%22,55j ' 27,59 *53,79o 15%8,66j &10 /0 / 00 &10 18,66&5j000

/0 00 IB ' 0

15%8,66j &100 3%300j &10 /0 00

200 3

15%8,66j &10

&10

/ 18,66&5j000 &10

/0 00 0 ' 22,55%18,13j ' 28,94 *38,79o

y por tanto, las intensidades de línea y las tensiones simples de la carga serán: o ¯I ' ¯I ' 27,95 *53,79o Y U ¯ ) ) ' ¯I @Z ¯ 1 A 1N 1 1 ' 279,5 *113,79

o ¯I ' ¯I &¯I ' 7,49 *&36,21o Y U ¯ ) ) ' ¯I @Z ¯ 2 B A 2N 2 2 ' 74,9 *&36,21

o ¯I ' &¯I ' 28,94 *&141,21o Y U ¯ ) ) ' ¯I @Z ¯ 3 B 3N 3 3 ' 289,4 *&171,21

Desplazamiento del neutro UN'N: U11) • 0

U22) • 0

U33) • 0

¯ ) ' U ¯ %U ¯ ) ) ' U ¯ ) )&U ¯ ' 279,5 *113,79 & 200 *90o ' 125,78 * 153,69 U NN N1 1N 1N 1N ¯ ) ' 125,78 *&26,31 U NN Como comprobación podemos calcular el desplazamiento del neutro siguiendo la línea y carga 2

¯ ) ' U ¯ %U ¯ ) ) ' U ¯ ) )&U ¯ ' 74 * & 36,21o & 200 * & 30o ' & 125,78 * & 26,31 U NN N2 2N 2N 2N

8 - 31

U3 = U12 U1 N

I1

U 1N

U3 N UN U 3N

U1 = U23

N

U2 N U2N

I3

U2 = U31 Diagrama fasorial sin neutro

1=1'

U1 U 2 = U 31 U 3'N'

N

U 3 = U 12 U N'N

N

U2 3=3'

2=2'

U 3'N'

U 1 = U 23 Diagrama triangular

8 - 32

N

8.4 FUENTES TRIFÁSICAS REALES. En la figura se representan los tres generadores monofásicos reales a los que estamos haciendo referencia en este tema.

Trifásico Real 1

E1 U'1

I' 1

3

2

E2 U'2

I' 2

E3 U'3

I' 3

Z1

Z2

Z3

1'

2'

3'

Normalmente, *E¯1*'*E¯2*'*E¯3* y desfasados 120º. También, *Z¯1*'*Z¯2*'*Z¯3* por ser las tres bobinas iguales en el generador, y como ¯)'U ¯ )'E ¯ & ¯I) Z ¯ U 1 11 1 1 1 ¯)'U ¯ )'E ¯ & ¯I) Z ¯ U 2 22 2 2 2 ¯)'U ¯ )'E ¯ & ¯I) Z ¯ U 3 3 3 33 3 ¯ '*'*U ¯ '*'*U ¯ '* y desfasados 120º. se tendrá en sistemas equilibrados en intensidades que: *U 1 2 3 ¯ ) ' U * 90o U 1 F ¯ ) ' U * & 30o U 2 F ¯ ) ' U * & 150o U 3 F Estos tres generadores se pueden conectar en estrella o en triangulo. La conexión estrella se realiza dejando libres los terminales 1, 2 y 3 de cada bobina y reuniendo los otros: 1', 2' y 3' en un solo nudo. De esta forma como puede verse en la figura siguiente pueden salir de nuestro generador 3 o 4 hilos, correspondientes a los terminales 1, 2 y 3; y cuando sale el cuarto, corresponde a la unión de los terminales 1', 2' y 3' que forman el neutro de la estrella.

8 - 33

Generador Real Trifásico en Estrella Z1

E1

Z2

E2

1

Fases I1

U'1 = U 1N U'2 = U 2N

U 23 = U 2N - U 3N

I2

N

E3

Z3

U'3 = U 3N

U 12 = U 1N - U 2N

2

U 31 = U 3N - U 1N

3

I3 N

Neutro E-3

Generador Trifásico en Estrella CON Neutro 1

1

Fases I1

E1 2

I2

Z1 3 N

Z2

Z3

I3 N

E2

E3 3

2

E-4 Generador Trifásico en Estrella SIN Neutro 1

1

Fases I1

E1 2

I2

Z1 3 N

Z3

Z2

I3 E2

E3 3

2

8 - 34

Si se conectan los tres generadores monofásicos desfasados 120º entre si en triangulo dará lugar a un sistema trifásico a tres hilos (no puede existir conductor neutro), siendo las posibles conexiones las de las figuras siguientes. Generador Trifásico en Triángulo

Generador Trifásico en Triángulo

T-1

1

2

2

3

E1

E2

E3

E1

E2

E3

I' 1

I' 2

I' 3

I' 1

I' 2

I' 3

Z1

Z2

Z3

Z1

Z2

Z3

Triángulo

T-2 E1

Z1

1

Fases

I' 1 3

Z2

1

Z3

I2

1

I'1 E3

T-3

Z2

I3

1

1

Z2

I1

E1

2

I'3 I2

E2

T-6

Generador Trifásico en Triángulo

Fases

Z1 2

I'2

3

I' 3

I3

1

I'3

2

I2 E3

Z3

2

3

Generador Trifásico en Triángulo

Z3

Fases

I' 2

I' 3

E1

1

I1 E2

Z2

1

2

I' 2

E3

E1 I' 1

I1 E2

T-5

Z1

3 2

3

1

Triángulo

T-4

Z1

3

Fases I1

E2

I'1

2

2

I2 E3

I'2

Z3 3

3

3

I3

I3

U12 = URS = E 1 - I' 1 Z 1 = U'1

U12 = URS = - E 2 + I' 2 Z 2 = - U'2

U23 = UST = E 2 - I' 2 Z 2 = U'2

U23 = UST = - E 3 + I' 3 Z 3 =- U'3

U31 = UTR = E 3 - I' 3 Z 3 = U'3

U31 = UTR = - E 1 + I' 1 Z 1 = - U'1

8 - 35

8.4.1. CONVERSIÓN DE FUENTES TRIFÁSICAS REALES. 8.4.1.1. CONVERSIÓN TRIANGULO-ESTRELLA. 1 +

E 12

TRANSFORMACION EN FUENTES DE INTENSIDAD

Z 31

Z 12

E

1

Z 23

31

+ 2

Z 31

Z 12

3

2

+

3 E

Z 23

23

1

1

I1

I1 - I3

I3

Z1

Z1 I1

I3 Z2

I2 - I1

I3 - I2

Z3 Z2 3

2 I2

2

3

I2

1 + E 1 = ( I1 - I3 ) Z 1

Z1 Z2 E 2 = ( I2 - I1 ) Z 2

Z3

Z3 E 3 = ( I3 - I2 ) Z 3

+

+

2

3

8 - 36

8.4.1.2. CONVERSIÓN ESTRELLA-TRIANGULO 1

1

+

+

E1

E1

1'

1' Z1 Z2

N

Z3

2' +

TRANSFORMACIONES DE IMPEDANCIAS ENTRE 1' , 2' Y 3'

3'

2' E3

E2

2

¯ ' Z 31

¯ ' Z 12

+

+

3

¯Z ¯ ¯ ¯ ¯ ¯ Z 1 2 % Z1Z3 % Z2Z3

2

¯ ' Z 23

¯ Z 2

3'

E2

E3

+

3

¯Z ¯ ¯ ¯ ¯ ¯ Z 1 2 % Z1Z3 % Z2Z3 ¯ Z 1

¯Z ¯ ¯ ¯ ¯ ¯ Z 1 2 % Z1Z3 % Z2Z3 ¯ Z 3 1 +

+ E1

1 E1

Z12

U12 = E1

E2

-

+

Z31

Z31 U31 = E3

Z12 E2 +

+

E3 +

+ +

2

+

+

2

3 E2

Z 23

U23

E3

Lo mas normal en alternadores trifásicos es que: Z1 = Z2 = Z3 = ZE Z12 = Z23 = Z31 = ZT = 3 ZE

8 - 37

=

E2 - E3

3 Z 23

-

E1

8.5.- ESTUDIO GENERALIZADO DE LOS SISTEMAS TRIFÁSICOS En apartados anteriores se han visto los esquemas equivalentes de los generadores trifásicos reales y las posibles cargas trifásicas que se pueden conectar a estos. Seguidamente vamos a estudiar como se calcularían las intensidades de línea cuando conectamos un generador a una carga mediante una línea trifásica real. El esquema eléctrico equivalente de la línea que escojemos para todos los casos a estudiar es el mas simple, el esquema serie, es decir que cada conductor es equivalente a una resistencia en serie con una autoinducción. R G

1'

1

S

2

2'

T

3

3'

RECEPTOR G

CENTRO DE

Generador

CONSUMO Generador

Línea de Transporte

R

1

1'

S

2

2'

T

3

3'

N

N

N'

RECEPTOR CENTRO DE CONSUMO

Línea de Transporte

L metros R L1

X L1

1 2

R L2 R L3

L metros

X L2 X L3

R L1

1' I1 I 2 2'

2

RECEPTOR TRIFASICO

3

L1L

1 R L2

X L2

R L3

X L3

RN

XN

1' I1 I 2 2'

3

I 3 3'

I 3 3'

RECEPTOR TRIFASICO

N I N N'

SISTEMA TRIFASICO A TRES HILOS

SISTEMA TRIFASICO A CUATRO HILOS

Fig. Esquema equivalente a la linea de conexión entre generador y receptor (cargas). Esquema serie.

8.5.1. SISTEMAS ESTRELLA-ESTRELLA En la figura se representa un sistema formado por tres fuentes de tensión reales ¯ yE ¯ (fuentes de igual valor eficaz y desfasadas entre ¯ ,E equilibradas conectadas en estrella: E 1

2

3

¯ ,Z ¯ yZ ¯ . Estas están conectadas a una carga en sí 120º) y sus tres impedancias internas Z G1 G2 G3 ¯ ,Z ¯ ,Z ¯ yZ ¯ . Se ha estrella mediante una línea cuyas impedancias internas valen: Z L1 L2 L3 N consignado un hilo neutro de impedancia genérica Z ¯ N que podrá o no estar incorporado al sistema a estudiar. Vamos a transformar el circuito dado en uno mas simple y poder así determinar fácilmente las intensidades de línea que es nuestro objetivo. 8 - 38

1

E 1 = U F 90

1

Fase L1

Z L1

Fase L2

Z L2

2

E 3 = U F -150 3 N

ZG

Fase L3

Z L3

Neutro

Z LN

E2

E3

N

3

Z C2

2

N'

ZC

3

3'

I

2

Z C1 2'

I

Z G1 Z G3

1'

I1

E1

E 2 = U F -30

RECEPTOR TRIFÁSICO EN ESTRELLA

LÍNEA REAL

GENERADOR REAL EN ESTRELLA

3 N'

IN

2

Fig. Sistema estrella-estrella

En la fase L1 o R encontramos tres impedancias en serie, la del generador, la linea y la carga, simplificando nos quedara solo una. Lo mismo ocurre con las otras fases. ¯ %Z ¯ %Z ¯ ¯ 'Z Z 1

G1

L1

C1

¯ 'Z ¯ %Z ¯ %Z ¯ Z 2 G2 L2 C2 ¯ 'Z ¯ %Z ¯ %Z ¯ Z 3 G3 L3 C3 L1

+

I1

E1

Z1(Y1) N’ N

+ E3

+ E2

L2

Z3(Y3)

Z2(Y2)

L3

I2 I3

IN

ZN(YN)

Fig. Sistema estrellla-estrella simplificado

La rama del neutro solo tiene una impedancia por lo que no se puede simplificar. El esquema de arriba es, evidentemente, el mismo de la figura siguiente, pero en él se ¯ ,E ¯ yE ¯ , con sus respectivas aprecian más claramente cómo las tres fuentes de tensión E 1

2

3

impedancias en SERIE, están conectadas entre sí y con el neutro en PARALELO.

8 - 39

E1 E2 E3

+

Fase L1 o R

Z1 I1

+

Fase L2 o S

Z2 I2

+

Fase L3 o T

Z3 I3

Neutro

N

ZN

N’ IN

Fig. Sistema estrella-estrella simplificado . Otra representación.

De la misma manera como se procedió en un tema anterior para la demostración del Teorema de MILLMANN, por sucesivas transformaciones es fácil reducir el indicado esquema a uno más sencillo, que es el que se representa en la figura siguiente. E1/Z1= E1 Y1 E1 Y1+ E2 Y2 + E3 Y3

E1 Y1+ E2 Y2 + E3 Y3

Z1 Y1+ Y2 + Y3

E2/Z2= E2 Y2

Y1+ Y 2 + Y 3 + Y N

Neutro

Z2

ZN

N’

N

E3/Z3= E3 Y3

N’

N

UN’N = IN’NZN’N = = IN’N/YN’N

Z3 Neutro ZN

N

N’

UNN' =

8 - 40

E1 Y 1 + E2 Y 2 + E3 Y 3 Y1 + Y2 + Y 3 + YN

La diferencia de potencial entre el neutro de la carga y el neutro de la generación, UN’N, también llamado desplazamiento del neutro valdrá:

¯ ' U N'N

¯ Y ¯ 'E i i

¯ %Y ¯ 'Y i N

'

¯ ¯ ¯ ¯ ¯ ¯ Y E 1 1 % E2 Y2 % E3 Y3

(1)

¯ %Y ¯ %Y ¯ %Y ¯ Y 1 2 3 N

Con la ayuda de esta tensión entre puntos neutros de la generación y de las cargas y volviendo al esquema original simplificado se puede determinar las intensidades de las corrientes de línea fácilmente, aplicando el segundo lema entre N’N, se obtendrá lo siguiente: ¯ ' & ¯I Z ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ U N'N 1 1 % E1 ' & I 2 Z2 % E2 ' & I 3 Z3 % E3 por lo que: ¯I ' 1

¯ &U ¯ E 1 N'N

¯I ' 2

¯ Z 1

¯ &U ¯ E 2 N'N ¯ Z 2

¯I ' 3

¯ &U ¯ E 3 N'N ¯ Z 3

Se estudiarán los seis casos siguientes: A)

Sistemas equilibrados: con neutro, sin neutro y con neutro de impedancia nula.

B)

Sistemas desequilibrados: con neutro, sin neutro y con neutro de impedancia nula.

¯ 'Z ¯ 'Z ¯ 'Z ¯ –> Y ¯ 'Y ¯ 'Y ¯ 'Y ¯ A) SISTEMAS EQUILIBRADOS: Z 1 2 3 1 2 3 ¯ 'Z ¯ 'Z ¯ 'Z ¯ –> Y ¯ 'Y ¯ 'Y ¯ 'Y ¯ donde Y ¯ es la Para estos sistemas: Z 1 2 3 1 2 3 admitancia común a todas las ramas menos la del neutro. Por lo que:

¯ ' U N'N

¯ (E ¯ %E ¯ %E ¯ ) Y 1 2 3 ¯ %Y ¯ 3Y N

8 - 41

¯ %E ¯ %E ¯ ' 0 ya que se trata de 3 fasores de igual módulo y Por otra parte: E 1 2 3 desfasados entre sí 120º. ¯ ' 0 es decir, que los dos puntos neutros N y N' tienen la MISMA Con ello: U N'N tensión.

N

E1 E2 E3

+

Fase L1 o R

I1= E1/Z

N’ Z

+

Fase L2 o S

+

Fase L3 o T Neutro ZN

Z1 = Z2 = Z3 = Z

I2= E2/Z

Y1 = Y2 = Y3 = Y

Z I3 = E3/Z Z IN = - (I1 + I2 + I3 ) = 0

N’

N UN’N = - IN ZN = 0 Fig. Sistema Estrella-Estrella equilibrada.

El sistema TRIFÁSICO propuesto equivale, por tanto, a TRES sistemas MONOFÁSICOS independientes y, en consecuencia: ¯ ¯ ¯ E E E ¯I ' 1 ; ¯I ' 2 ; ¯I ' 3 1 2 3 ¯ ¯ ¯ Z Z Z 1 2 3 ¯ ,E ¯ yE ¯ un sistema equilibrado de f.e.m., los fasores ¯I , ¯I e ¯I Al constituir E 1 2 3 1 2 3 ¯ 'Z ¯ 'Z ¯ ). también forman un sistema de fasores asimismo equilibrado (debido a que Z 1 2 3 Finalmente, se verificará:

¯I % ¯I % ¯I ' 0 por lo que la intensidad circulante por el 1 2 3

conductor neutro es nula, ¯I N ' & (¯I1 % ¯I2 % ¯I3 ) ' 0 . La existencia o no de cable neutro y el valor de su impedancia caso de existir no altera el régimen de corrientes en el sistema que sólo depende de las f.e.m. de la generación y de la impedancia TOTAL por fase (la interna de cada generador elemental más la de la línea y la carga correspondiente). 8 - 42

B) SISTEMAS DESEQUILIBRADOS B.1) Sistemas con neutro de impedancia NULA: En este supuesto, la expresión (1) obtenida ¯ ' 0 resultará: Y ¯ ' 4 . El sistema así anteriormente se anula también, ya que al ser: Z N

N

propuesto vuelve a ser equivalente a TRES sistemas MONOFÁSICOS independientes y las corrientes de sus fases valdrán, como antes: ¯ ¯ ¯ E E E ¯I ' 1 ; ¯I ' 2 ; ¯I ' 3 1 2 3 ¯ ¯ ¯ Z Z Z 1 2 3 si bien, ahora, la terna de fasores: ¯I1 , ¯I2 e ¯I3 , no constituye un sistema equilibrado, por lo que: ¯I % ¯I % ¯I ' ¯I … 0 1 2 3 N

N

E1 E2 E3

+

Fase L1 o R

I1= E1/Z1

+

Fase L2 o S

I2= E2/Z2

+

Fase L3 o T

I3= E3/Z3

Z1

N’

Z2

Z3

IN = - (I1 + I2 + I3 )

N’

N UN’N = 0

Fig. Sistema Estrella-Estrella desequilibrada con neutro de impedancia nula.

B.2) Sistemas sin neutro: La expresión (1) se convierte en:

¯ ' U N'N

¯ Y ¯ ¯ ¯ ¯ ¯ E 1 1 % E2 Y2 % E3 Y3 ¯ %Y ¯ %Y ¯ Y 1 2 3

ya que, al ser: Z ¯ N = 4, resulta: Y ¯ N = 0.

8 - 43

(2)

será:

El numerador de (2) será, en general, distinto de cero, con lo que, también en general, ¯ …0 U N'N

N

E1 E2 E3

+

Fase L1

+

Fase L2

+

Fase L3

I1 = (E1 - UN’N) / Z1

Z1

N’

I2 = (E2 - UN’N) / Z2

Z2 I 1 + I2 + I3 = 0

I3 = (E3 - UN’N) / Z3

Z3 IN = 0

N’

N UN’N ?

Fig. Sistema Estrella-Estrella desequilibrada con neutro de impedancia infinita (sin neutro)

El sistema trifásico no será ya equivalente a tres sistemas monofásicos independientes, ¯ %U ¯ %U ¯ ' 0 de donde: ¯ 'E ¯ &U ¯ y deberá hacerse: E U y por tanto: 1

¯I ' 1

Z1

¯ &U ¯ U 1N N'N ¯ Z 1

N'N

Z1

1

N'N

¯ &U ¯ )Y ¯ ' (U 1N N'N 1

e, igualmente:

¯I ' 2

¯I ' 3

¯ &U ¯ U 2N N'N ¯ Z 2 ¯ &U ¯ U 3N N'N ¯ Z 3

¯ &U ¯ )Y ¯ ' (U 2N N'N 2

¯ &U ¯ )Y ¯ ' (U 3N N'N 3

En este caso, la aplicación del 2º Lema de KIRCHHOFF al nudo N' obliga a que: ¯I % ¯I % ¯I ' 0 1 2 3

8 - 44

¯N … 0 e Y B.3) Sistemas con neutro de impedancia distinta de cero: al ser: Z ¯ N … 4, la expresión (1) no se podrá simplificar:

¯ ' U N'N

¯ Y ¯ ¯ ¯ ¯ ¯ E 1 1 % E2 Y2 % E3 Y3

(3)

¯ %Y ¯ %Y ¯ %Y ¯ Y 1 2 3 N ¯ …0 U N'N

Como en el caso anterior, también en éste será:

Las corrientes ¯I1 , ¯I2 e ¯I3 tendrán los mismos valores antes calculados:

¯I ' 1

¯ &U ¯ U 1N N'N ¯ Z 1

¯I ' 2

;

¯ &U ¯ U 2N N'N ¯ Z 2

;

¯I ' 3

¯ &U ¯ U 3N N'N ¯ Z 3

¯I ' ¯I % ¯I % ¯I siendo, en general, N 1 2 3

Al existir conductor neutro se verificará: distinta de cero.

N

E1 E2 E3

+

Fase L1

+

Fase L2

+

Fase L3

I1 = (E1 - UN’N) / Z1

N’

Z1 I2 = (E2 - UN’N) / Z2

Z2 I3 = (E3 - UN’N) / Z3

Z3

Neutro

IN = - (I1 + I2 + I3 ) ? 0

ZN

N’

N UN’N Fig. Sistema Estrella-Estrella desequilibrada con neutro de impedancia distinta de cero.

8 - 45

Ejercicio:

En la figura se representa un sistema Estrella-Estrella desequilibrado en las cargas y sin neutro. L1

+

I1

E1 220 0 V

Y1 = 1 0 S N’

220 -30 V E3

+ 220

N

Y2 = 2 0 S

+

E2

L2

-150 V

I2

Y3 = 2 0 S

L3

I3 - Determinar las corrientes de línea y dibujar el diagrama fasorial. ¯ ' 1/5 * 0 , - Si le colocamos un conductor entre N y N', de impedancia Z N

obtener los valores anteriores y la intensidad que pasa por esta impedancia. Solución: Según la expresión (2), la tensión entre el neutro de la carga y de la generación será:

¯ ' U N'N

¯ ¯ ¯ ¯ ¯ ¯ Y E 1 1 % E2 Y2 % E3 Y3 ¯ %Y ¯ %Y ¯ Y 1 2 3

220 j × 1 % 220 '

3 j 3 j & 2 % 220 & & 2 2 2 2 2 ' 1%2%2

' 44 (j % 3 & j & 3 & j) ' &44 j ' 44 * 270 V A partir de este valor se tendrá: ¯I ' (E ¯ &U ¯ )Y ¯ ' (220 j % 44 j) 1 ' 264 j ' 264 *90º A 1 1 N'N 1 ¯I ' (E ¯ &U ¯ )Y ¯ ' 220 2 2 N'N 2

3 j & % 44 j 2 ' 44 (5 3 & 3 j) ' 2 2

' 44 66 *&19,11º ' 403,27 *&19,11º A ¯I ' (E ¯ &U ¯ )Y ¯ ' 220 & 3 & j % 44 j 2 ' 22 (&10 3 & 10 j % 4 j) ' 3 3 N'N 3 2 2 ' &44 (5 3 % 3 j) ' 44 66 *&160,89º ' 403,27 *&160,89º A

8 - 46

¯I % ¯I % ¯I ' 264 j % 44 (5 3 & 3 j) & 44 (5 3 % 3 j) ' 0 1 2 3 conforme debía de tenerse. U 12 E 1= U'1

I1 I N= 0 N

I3

E3

U 23

N

I2

U'3 E 2 = U'2 - I1

U

Fig. Diagrama de tensiones e intensidades del caso estudiado

¯ ' 5 *0º S Si al sistema estudiado se le dota de un conductor neutro de Admitancia: Y N L1

+

I1

E1 220 0 V

Y1 = 1 0 S N’

220 -30 V E3

+ 220

N

E2

+

Y2 = 2 0 S

I2

L2

-150 V

Y3 = 2 0 S

I3 Y1 = 5 0 S

en este caso:

8 - 47

IN = - (I1 + I2 + I3 )

L3

220 j × 1 % 220 ¯ ' U N'N

3 j 3 j & 2 % 220 & & 2 2 2 2 2 ' & 22 j ' 22 *&90º V 1%2%2%5

Los valores de los fasores de las intensidades de las corrientes en cada fase serán: ¯I ' (E ¯ &U ¯ )Y ¯ ' (220 j % 22 j) 1 ' 242 j ' 242 *90º A 1 1 N'N 1 ¯ &U ¯ )Y ¯ ' 220 ¯I ' (E 2 2 N'N 2

3 j & % 22 j 2 ' 44 (5 3 & 4 j) ' 2 2

' 44 91 *&24,8º ' 419,73 *&24,8º A ¯I ' (E ¯ &U ¯ )Y ¯ ' 220 & 3 & j % 22 j 2 ' &44 (5 3 % 4 j) ' 3 3 N'N 3 2 2 ' 44 91 *&155,2º ' 419,73 *&155,2º A Para este supuesto: ¯I % ¯I % ¯I ' 242 j % 44 (5 3 & 4 j) & 44 (5 3 % 4 j) ' 1 2 3 ' &110 j ' 110 *&90º A y, por tanto: ¯I ' ¯I ' 110 j ' 110 *90º A NN' N

8 - 48

ESTUDIO GENERALIZADO DE LOS SISTEMAS TRIFASICOS GENERADOR REAL

LÍNEA REAL

RECEPTOR TRIFÁSICO

SISTEMA ESTRELLA-ESTRELLA Receptor Trifásico en Estrella CON Neutro

Generador Trifásico en Estrella CON Neutro 1

E 1 = U F 90

1

Fase R

Z L1

2

Fase S

Z L2

I1

E1

E 2 = U F -30

1'

E 3 = U F -150

I

Z G1 3 N

Z G3

ZG

Neutro

Z LN

N

3

Z C2

2

N'

ZC

3

3'

I

2

E2

E3

Fase T

Z L3

Z C1 2'

3 N'

IN

2

SISTEMA ESTRELLA-TRIÁNGULO Generador Trifásico en Estrella SIN Neutro 1

Receptor Trifásico en Triángulo 1

Fase R

2

Fase S

3

Z E3 3

ZG

Z L2

2'

I

Z G1 G3

1'

1'

I1

E1

N

Z L1

Fase T

Z C12 Z C13 Z C23

2

Z L3

3'

I

2

2'

3'

3

E2 2

EQUIVALE A UN SISTEMA ESTRELLA-ESTRELLA SIN NEUTRO

8 - 49

( Z LN =

)

ESTUDIO GENERALIZADO DE LOS SISTEMAS TRIFASICOS GENERADOR REAL

LÍNEA REAL

RECEPTOR TRIFÁSICO

SISTEMA TRIÁNGULO-ESTRELLA Generador Trifásico en Triángulo 1

Fase R

1

E 12

Receptor Trifásico en Estrella SIN Neutro Z L1 I1

Z G12

Z G31

2

E 31

1'

Fase S

2

2'

I

E 23 Z G23

Fase T

3

3

Z C1

Z L2

Z C2

2

Z L3

N'

ZC

3

3'

I

3

EQUIVALE A UN SISTEMA ESTRELLA-ESTRELLA SIN NEUTRO

( Z LN =

)

SISTEMA TRIÁNGULO-TRIÁNGULO Generador Trifásico en Triángulo 1

1

E 12

Z L1

2

E 31

1'

2

Fase S

Z L2

2'

I

E 23 Z G23

1'

I1

Z G12

Z G31

3

Fase R

Receptor Trifásico en Triángulo

3

Fase T

2'

Z C13 Z C23

2

Z L3

Z C12

3' 3'

I

3

EQUIVALE A UN SISTEMA ESTRELLA-ESTRELLA SIN NEUTRO

8 - 50

( Z LN =

)

Get in touch

Social

© Copyright 2013 - 2024 MYDOKUMENT.COM - All rights reserved.