Story Transcript
Tratamiento de aguas residuales Tratamientos biológicos y los gastos operativos ExpoAgua, 22.10.2015, Lima
www.das-ee.com
Agenda
Empresa Comparación tratamientos biológicos Gastos operativo de PTARI Ahorro energía
3
DAS Environmental Expert
1991 fundado en Dresde/Alemania, mediana empresa en manos familiares 300 empleados trabajan en el mundo en soluciones de recoursos eficientes y sostenibles para el tratamiento de aguas residuales y tratamiento de gases 2012 fundadción de DAS Experto Ambiental con sede en Buenos Aires
2014 Develop-ppp (GIZ) con instalación de la primera planta piloto de tratamiento de aguas residuales industriales en Lima/Senati
4
Tipos de tecnologías Tratamiento del aguas residuales
Planificación e ingeniería Instalación y puesta en marcha Mantenimiento y servicio Optimizaciones de PTARI
5
Tratamiento biológico Reducción de la materia orgánica por organismos vivos
Anaerobios (sin oxígeno) • Anammox • Biodigestor EGSB
Aerobios (con oxígeno): • TFR – Reactor de lecho percolador • MBBR - (Moving Bed Biofilm Reactor) - Reactor biológico de lecho móvil - Crecimiento de la biomasa en soportes de plástico • Lodo Activado (Fangos Activos) – presencia de microorganismos en forma dispersa
6
Tratamiento biológico Anaeróbicos
Reacción en ausencia de oxígeno
C6H12O6
2 CO2 + 2 C2H5OH + Energía (2 ATP)
Biodegradación incompleta / Escasa producción de energía
7
Tratamiento biológico Anaeróbicos
Ventajas tratamiento anaeróbico
Desventajas tratamiento anaeróbico
• Producción de gases combustibles– Metano
• Biodegradación incompleta
• Poca generación de lodo
• Temperatura estable
• No se requiere energía para oxigenar
• pH estable
• Tratamiento de aguas residuales altamenta contaminadas
• Inhibición del proceso por NH3, H2S, metales pesados
• Suceptible a fallas durante la operación
8
Tratamiento biológico Aeróbicos
Reacción en presencia de oxígeno
C6H12O6 + 6 O2
6 CO2 + 6 H2O + Energía (38 ATP)
Biodegradación completa / alta generación de energía
9
Tratamiento biológico Aeróbicos
Ventajas tratamiento aeróbico
Desventajas tratamiento anaeróbico
• Degradación completa
• Generación mayor de lodos
• Proceso muy estable
• Costes para la aireación
• Buena tolerancia ante fluctuaciones en los parámetros del agua • Diseño modular es posible
10
Tratamiento biológico Tecnologías
Lodos activados
Membrana
Biopelícula
Rotating Disc System
Reactores de lecho fijo
Reactor de lecho fluidizado
SBR
11
Características tratamientos biológicos
Lodo activado • •
• •
Distribución homogénea de la biomasa Colectividades de bacteria que sedimentan de manera favorable durante el tratamiento de lodo Todas las bacterias están expuestos al mismo ambiente El oxígeno llega a través de burbujas al copo de lodo
Biofilm • • •
•
La biomasa es estructurada Las colectividades de bacteria se adhieren fácilmente Biocenosis muy complejo gracias a la edad del lodo El oxigeno llega únicamente a la capa exterior del biofilm. Medición de la eficiencia de remoción por la superficie generada y el volumen.
Membranas • • •
•
Distribución homogénea de la biomasa Alta concentración de la materia seca Biocenosis muy complejo gracias a la edad del lodo El oxigeno llega únicamente a la capa exterior del biofilm. El oxígeno llega a través de burbujas al copo de lodo
12
Comparación - Ventajas
Lodo activado •
•
Se aprovecha el volumen completo del reactor Tratamiento adecuado para aguas residuales domésticas
Biofilm • • • •
• • •
Tratamiento muy estable y poco sensible ante factores cambiantes Tratamiento adecuado para compuestos difícilmente degradables Alta estabilidad del proceso Sin retorno del lodo en exceso A menudo sin la necesidad de un posterior tratamiento de lodo Compacto, poco requerimiento de espacio Bajos costos operativos
Membranas •
• • • • •
El agua tratada es casi libre de sólidos y gérmenes Tratamiento adecuado para compuestos difícilmente degradables Alta estabilidad del proceso Sin retorno del lodo en exceso Sin la necesidad de un posterior tratamiento de lodo Disociación del tiempo de permanencia hidráulico y de los sólidos
13
Comparación - Desventajas
Lodo activado • •
•
•
•
Biomasa muy poco compleja por la falta de edad Rendimiento de la degradación depende de la concentración de la biomasa y las capacidades metabólicas de la biocenosis disponible Cuanto más sólidos se requiere más oxígeno. Por lo tanto aumenta el consumo energético Requerimiento de mucho volumen Sistema sensible ante condiciones cambiantes
Biofilm •
• •
Un pre-tratamiento adecuado es muy importante. Un mal pre-tratamiento provoca obstrucciones Posibles flujos de corto – circuito Limitación de su difusión en caso de biofilms demasiados gruesos
Membranas • • •
Mayor costos de inversión y de operación Mucho mantenimiento Susceptible a obstrucción de la membrana
14
Proceso de biopelícula Reactores de lecho fijo - ejemplo percolador
15
Proceso de biopelícula Discos rotativos sumergido Trabajando con las superficies la rotación de discos o rodillos giratorios con amplia superficie de crecimiento para los microorganismos.
16
Proceso de biopelícula
Lecho fluidizado
Procesos de lecho fluidizado operan con un material de soporte flotante
17
Proceso de biopelícula
Reactores de lecho fijo aireado
El material de soporte en cuerpo de agua
18
Tratamiento biológico MBBR Moving Bed Bio Reactor • Tecnología basada en el crecimiento de biomasa encima y en el interior de unos soportes plásticos con una alta superficie específica que se encuentran suspendidos y en constante movimiento dentro del reactor biológico. • El oxígeno necesario para los microorganismos y el movimiento del material de soporte es suministrado mediante un sistema de parrillas que cubre todo el fondo de los reactores de lecho móvil. • El exceso de lodo producido se desprende en forma constante de los soportes. Es un proceso continuo sin la necesidad de purgas temporarias. 19
MBBR - Ventajas
• Para cantidades altas de efluentes y grandes cargas orgánicas • Más robusto frente a factores negativos • Uso del volumen de reacción máximo
• Combinación con etapa de lodos activados posible • No hace falta un retorno de lodo • Reequipamento de las plantas de tratamiento de efluentes • Dependiente del tipo de efluente se puede elegir una multitud de material de soporte
20
Tratamiento biológico Lodo activado • La bacteria se encuentra libremente flotando en la pileta y se purga constantamente. • Etapa de baja carga orgánica, en la cual se eliminan finalmente también los compuestos difícilmente degradables gracias a la particular biocenosis generada en tal pileta. • La ventaja de está biocenosis es que está adaptada a una oferta de nutrientes distinta que en la etapa del MBBR. Los microorganismos de la primera etapa están acostumbrados a una oferta muy elevada de nutrientes y en la segunda etapa la biocenosis se acostumbrará a una oferta muy reducida de nutrientes.
21
Tratamiento biológico Combinación MBBR & lodos activado • La combinación del método de microorganismos adheridos con el del lodo activado garantiza una muy alta estabilidad en el proceso ante cualquier tipo de variación de carga. • La planta propuesta se puede adaptar fácilmente a posibles modificaciones en la fábrica. Una ampliación será absorbida por una sencilla agregación de más material de soporte a la pileta de alta carga orgánica y/o la modificación del régimen de circulación.
22
Tratamiento biológico MBBR – Lodo Activado Clarificador / Sedimentador
• Posteriormente a las piletas con alta/baja carga orgánica, el agua pasa a un sedimentador donde el lodo sedimenta. • Parte de este lodo es recirculado a la pileta de baja carga orgánica. • El lodo en exceso se bombea con la ayuda de un barredor hacía un depósito de lodo
23
Tratamiento biológico Bioreactor TFR
Bioreactor de Lecho Percolador Tanque de sedimentación
Reserva de agua tratada
Agua tratada
Lodos Efluente
24
Tratamiento biológico Bioreactor TFR - Ventajas Totalmente automatizado
Materiales plásticos de alta resistencia
• •
•
No hay riesgo de corrosión, larga vida
•
Instalación posible tanto en el interior como en el exterior
Bajos costos de operación y mantenimiento Funcionamiento en automático o manual
Modular • • •
Adaptación flexible a cambios demográficos Posibilidad de períodos sin funcionamiento Ampliable fácilmente en fechas posteriores
Formación de biopelícula altamente activa •
Adaptación completa de los microorganismos
•
Estabilidad de proceso
•
Operación segura con bajas cargas
Bioreactor compacto •
•
Tamaño pequeño Plantas agrandables
Regeneración específica •
Menor generación de lodos biológicos en exceso
Inyección de aire sin columna de agua •
Hasta un 30% menos en consumo de
Solución completa
energía
•
Configuración y ejecución rápida 25
Comparación Lecho fijo - TFR
Parámetro
Lecho fijo
TFR
Superficie teoretica m²/m³
100 – 150
420
DBO5 carga orgánica kg/m³*d
0,6
0,5 – 13
Carga de superficie m/h
0,8
8
Exceso de lodo kg/kg
0,75
0,20
26
Examen del laboratorio Ejemplo industria láctea – COD
Muestreo - 04.09.2013 - 05.09.2013 1000 900
Fácilmente biodegradable = ca. 70% del COD
C DOC [mg/l] [mg/l] COD
800 700 600
Poco biodegradable
500 400 300 200 100
0 0.0
5.0
10.0
15.0
20.0
25.0
30.0
Zeit [h] [hs] Tiempo
27
Examen del laboratorio Ejemplo industria láctea – COD
Velocidad de la degradación Abbaugeschwindigkeit nachdespués 2h bis 8h2 a 8 horas 1000
[mg/l] COD C DOC B [mg/l]
900 800 700
DOC = 95 [mg/lxh]
600 500
DOC = 58 [mg/lxh]
400 300 200
100 0 0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
Zeit[hs] [h] Tiempo
28
Examen del laboratorio Ejemplo industria láctea – DBO5
DBO5 Degradación - 04.09.2013
BSB [mg/l] DBO 5 [mg/l]
2500
Fácilmente biodegrada ble
2000 1500 1000 500 0 0
20
40
60
80
100
120
140
Zeit [h] Tiempo [hs]
29
Examen del laboratorio Ejemplo industria química – COD
COD Degradación - 18.04.2007 250
COD [mg/l]
200 150 100 50 0 0.00
100.00
200.00
300.00
400.00
500.00
600.00
Tiempo [hs]
30
Eficiencia de la biodegradación Bioreactor TFR Industria
Cantidad de efluente [m³/d]
DQO entrada [mg/l]
Eficencia DQO [kg/m³ por día]
Lechería
500
3.000 – 1.200
8,1
Lechería
500
2.700 – 1.200
13,1
Lechería
5
60.000 – 5.000
12,1
Bebidas
200
5.500 – 250
4,63
Bebidas
150
1.000 – 100
12,6
Papas
360
3.500 – 1.00
4,1
Cosmetica
120
4.500 – 400
3,0
Desulfuración de gases de combustión
720
360 – 60
0,69
31
Eficiencia de la biodegradación Bioreactor TFR Industria
Cantidad de efluente [m³/d]
DQO entrada [mg/l]
Eficencia DQO [kg/m³ por día]
Lechería
500
3.000 – 1.200
8,1
Lechería
500
2.700 – 1.200
13,1
Lechería
5
60.000 – 5.000
12,1
Bebidas
200
5.500 – 250
4,63
Bebidas
150
1.000 – 100
12,6
Papas
360
3.500 – 1.00
4,1
Cosmetica
120
4.500 – 400
3,0
Desulfuración de gases de combustión
720
360 – 60
0,69
32
Eficiencia de la biodegradación Bioreactor TFR Industria
Cantidad de efluente [m³/d]
DQO entrada [mg/l]
Eficencia DQO [kg/m³ por día]
Lechería
500
3.000 – 1.200
8,1
Lechería
500
2.700 – 1.200
13,1
Lechería
5
60.000 – 5.000
12,1
Bebidas
200
5.500 – 250
4,63
Bebidas
150
1.000 – 100
12,6
Papas
360
3.500 – 1.00
4,1
Cosmetica
120
4.500 – 400
3,0
Desulfuración de gases de combustión
720
360 – 60
0,69
33
Eficiencia de la biodegradación Bioreactor TFR Industria
Cantidad de efluente [m³/d]
DQO entrada [mg/l]
Eficencia DQO [kg/m³ por día]
Lechería
500
3.000 – 1.200
8,1
Lechería
500
2.700 – 1.200
13,1
Lechería
5
60.000 – 5.000
12,1
Bebidas
200
5.500 – 250
4,63
Bebidas
150
1.000 – 100
12,6
Papas
360
3.500 – 1.00
4,1
Cosmetica
120
4.500 – 400
3,0
Desulfuración de gases de combustión
720
360 – 60
0,69
34
Gastos operativos de PTARI
Lodo
Personal
Químicos
Electricidad
Laboratorio
35
Gastos en personal & lodo
Lodo: • Tipo de PTARI • Materia seca • Gastos de disposición final o uso como abono
Personal: • Grado de automatización • Perfil del operador • Competencias sociales
36
Gastos en químicos
Nutrientes • • • •
Amonio Fosfato Urea …
Neutralización • Soda cáustica • Ácido
Antiespumante • En base de Silicona •…
Polímero • • • •
Aluminio Hierro Calcio Anionico, cationico, nonionico
37
Gastos en luz
kWh Sopladores Bombas Compresor Agitadores …
De la red Energía regenerativ
Consumo de energía
Uso de aire de presión
38
Gasto laboratorio Caracterización del aguas residuales
Laboratorio: • Estudio previo • Analysis continuo
Parámetros físicos
Parámetros de químicos
•
Valor de pH
• DQO –
Demanda química de oxígeno
•
Turbiedad
• COT –
Carbón orgánico total
•
Colorante
• DBO –
•
Conductividad
Demanda biológica de oxígeno
•
Olor
• AOX -
•
Temperatura
Compuestos orgánicos halogenados
•
Coeficiente de absorción
• PAHs -
Hidrocarburos poliaromáticos 39
Ahorra en energía En general en una fábrica
Ilumuinación
Aire de presión
Bombas
Sistemas de agua de refrigeración
Calefacción
Sistemas de ventilación
40
Ahorro en energía
Reducción de los residuos sólidos orgánicos. La producción y el uso del gas metano.
El ahorro y reuso de agua. El montaje de altamente eficiente sistemas/tecnologías. Modernización del sistems de aireación.
Ahorra en el uso de químicos (nutrientes, neutralización, antiespumante, polímero) Evitar cortes de luzes > garantizar proceso continuo sin interrumpir la biologia Optimizar procesos en la producción > evitar averías desequilibran la eficiencia del tratamiento del efluente
Instalar instrumentor de medición y control para medir eficencia del programa y del personal y así controlar y realizar objectivos de sustentabilidad y ahorro del cliente.
41
Ahorro en energía Intercambiador térmico
• Autolimpieza permanente, por lo que no haya pérdida de rendimiento causada por incrustaciones (biofilm)
• Apto para aguas resiudales con alta cantidad de sólidos • Baja pérdida de presión • Simple inspección, baja mantenimiento • Alta turbulencia por cepillos giratorios, por lo tanto se genera una buena transferencia de calor
42
Muchas gracias!
Ing. ind. Anke Reichardt Responsable Sudamérica DAS Experto Ambiental SRL Tel: +54 9 - 11 - 4424 7277
www.das-ee.com www.das-argentina.com.ar