Story Transcript
3.16.1 Determinación de la trasformada inversa mediante el uso de las fracciones parciales
295
3.16.1 Determinación de la trasformada inversa mediante el uso de las fracciones parciales Transformadas de Ecuaciones por descomposición en fracciones parciales Aquí mostramos como aplicar la transformada de cualquier función racional (una razón de polinomios) expresándola como una suma de fracciones más simples llamadas fracciones parciales. Para ver como funciona en general el método de las fracciones parciales consideremos una función racional f ( x) =
P ( x) Q( x)
(1)
Donde P y Q son polinomios. Es posible expresar f como una suma de fracciones más simples siempre que el grado de P sea menor que el grado de Q , tal función racional se llama función propia. Recuerde que si
P ( x) = an x n + an −1 x n −1 + ... + a1 x + a0 donde an ≠ 0
(2)
Entonces el grado del polinomio P es de grado n . Si f es impropia, es decir, que el grado de P sea mayor o igual al grado de Q , entonces debemos dividir Q entre P (mediante la división larga) hasta que se obtenga un residuo R( x) tal que grado de R sea menor al grado de Q Esta división se expresa como f ( x) =
P( x) R( x) = S ( x) + Q( x) Q( x)
(3)
Donde S y R son también polinomios. Explicaremos los cuatro diferentes casos en que aparecen las fracciones parciales con un ejemplo sencillo de Transformada de Laplace.
Instituto Tecnológico de Chihuahua / C. Básicas
Amalia C. Aguirre Parres
3.16.1 Determinación de la trasformada inversa mediante el uso de las fracciones parciales
296
CASO I. El denominador Q( x) es un producto de factores lineales distintos, esto implica que podemos escribir
Q( x) = (a1 x + b1 )(a2 x + b2 )...(ak x + bk )
(4)
Donde ningún factor esta repetido. En este caso el teorema establece que existen constantes A1 , A2 , A3 ,..., Ak Tales que Ak A1 A2 R( x) = + + ... + Q( x) a1 x + b1 a2 x + b2 ak x + bk
(5)
Para explicar cómo determinar esas constantes, lo realizaremos con un ejemplo. 1 Ejemplo 3.16.1.1 Determinar L−1 2 s + s − 2 1 1 −1 Factorizando el denominador obtenemos L−1 2 =L s + s − 2 ( s − 1)( s + 2 ) A 1 B −1 Descomponiéndolo en fracciones parciales L−1 2 + =L s + s − 2 ( s − 1) ( s + 2 ) En donde A y B son constantes que debemos determinar. Multiplicando en ambos lados del igual por el denominador ( s − 1)( s + 2 ) 1 B A Obtenemos ( s − 1)( s + 2 ) 2 + ( s − 1)( s + 2 ) , obtenemos = s + s − 2 ( s − 1) ( s + 2 ) 1 = A ( s + 2 ) + B ( s − 1)
Instituto Tecnológico de Chihuahua / C. Básicas
(6)
Amalia C. Aguirre Parres
3.16.1 Determinación de la trasformada inversa mediante el uso de las fracciones parciales
297
En cuya ecuación se puede sustituir cualquier valor para s , pero en este caso damos los valores de las raíces del denominado. Haciendo s = 1 se obtiene A =
1 3
Haciendo s = −2 obtenemos B = −
1 3
Aquí observaremos la propiedad de linealidad. Sustituyendo las constantes, queda 1 1 1 3 L−1 2 − 3 = s + s − 2 s −1 s + 2 1 1 1 −1 3 −1 3 Separando términos L−1 2 = L −L s + s − 2 s − 1 s + 2 1 1 −1 1 1 −1 1 Extrayendo las constantes L−1 2 = L − L s + s − 2 3 s − 1 3 s + 2 1 1 Mediante fórmulas directas f (t ) = et − e −2t 3 3 s 2 +6 s + 9 Ejemplo 13.16.1.2 Evalúe L ( s − 1)( s − 2)( s + 4) −1
Existen constantes reales únicas, A, B, C s 2 + 6s + 9 A B C = + + Podemos escribir ( s − 1)( s − 2)( s + 4) s − 1 s − 2 s + 4
Instituto Tecnológico de Chihuahua / C. Básicas
Amalia C. Aguirre Parres
3.16.1 Determinación de la trasformada inversa mediante el uso de las fracciones parciales
298
s 2 + 6s + 9 A( s − 2)( s + 4) + B ( s − 1)( s + 4) + C ( s − 1)( s − 2) = ( s − 1)( s − 2)( s + 4) ( s − 1)( s − 2)( s + 4)
Como los denominadores son idénticos, los numeradores también deben serlo. O bien multiplicando ambos lados del igual por el denominador del lado izquierdo, resulta s 2 + 6 s + 9 = A( s − 2)( s + 4) + B( s − 1)( s + 4) + C ( s − 1)( s − 2) Desarrollando el lado derecho del igual En MathCad 2
s + 6s + 9
A ⋅ [ ( s − 2) ⋅ ( s + 4) ] + B⋅ [ ( s − 1) ⋅ ( s + 4) ] + C⋅ [ ( s − 1) ⋅ ( s − 2) ]
2 Como ( s − 2) ⋅ ( s + 4) s + 2⋅ s − 8,
( s − 1) ⋅ ( s − 2)
( s − 1) ⋅ ( s + 4)
2
s + 3⋅ s − 4
y
2
s − 3⋅ s + 2
Por lo que desarrollando obtenemos 2
s + 6s + 9
2
2
2
A ⋅ s + 2⋅ A ⋅ s − 8⋅ A + B⋅ s + 3⋅ B⋅ s − 4⋅ B + C⋅ s − 3⋅ C⋅ s + 2⋅ C
Agrupando basándose en las potencias de s 2
s + 6s + 9
2
( A + B + C) ⋅ s + ( 2⋅ A + 3⋅ B − 3⋅ C) ⋅ s + ( −8⋅ A + 4⋅ B + 2⋅ C)
Al comparar los coeficientes de las potencias de s , en ambos lados de la igualdad, se ve que la ecuación equivale a un sistema de tres ecuaciones con las incógnitas A, B, C Donde A + B + C := 1, 2⋅ A + 3⋅ B − 3⋅ C 6 −8⋅ A + 4⋅ B + 2⋅ C 9 Sin embargo, recordemos que hay una manera fácil de determinar esas incógnitas. Si igualamos s = 1 , s = 2 , s = 4 en la ecuación s 2 + 6 s + 9 = A( s − 2)( s + 4) + B( s − 1)( s + 4) + C ( s − 1)( s − 2)
Instituto Tecnológico de Chihuahua / C. Básicas
Amalia C. Aguirre Parres
3.16.1 Determinación de la trasformada inversa mediante el uso de las fracciones parciales
299
Para s = 1 tenemos que (1) 2 + 6(1) + 9 = A(1 − 2)(1 + 4) + B(1 − 1)(1 + 4) + C (1 − 1)(1 − 2) O bien 16 = A(−1)(5) , por lo que A = −
16 5
Para s = 2 tenemos que (2) 2 + 6(2) + 9 = A(2 − 2)(2 + 4) + B(2 − 1)(2 + 4) + C (2 − 1)(2 − 2) O bien 25 = B(1)(6) Para s = −4 tenemos que (−4) 2 + 6(−4) + 9 = A(−4 − 2)(−4 + 4) + B(−4 − 1)(−4 + 4) + C (−4 − 1)(−4 − 2) O bien 1 = C (−5)(−6) Así que, B =
25 1 yC= 6 30
Por consiguiente, la descomposición en fracciones parciales es 16 25 1 s 2 + 6s + 9 = − 5 + 6 + 30 ( s − 1)( s − 2)( s + 4) s −1 s − 2 s + 4 Por lo que, aplicando las fórmulas de transformadas inversas s 2 + 6s + 9 16 −1 1 25 −1 1 1 −1 1 L−1 =− L + L + L 5 s − 1 6 s − 2 30 s + 4 ( s − 1)( s − 2)( s + 4) s 2 + 6s + 9 16 t 25 2t 1 −4t Tenemos que L−1 =− e + e + e 5 6 30 ( s − 1)( s − 2)( s + 4)
CASO II. Q( x) es un producto de factores lineales, algunos de los cuales están repetidos.
Instituto Tecnológico de Chihuahua / C. Básicas
Amalia C. Aguirre Parres
3.16.1 Determinación de la trasformada inversa mediante el uso de las fracciones parciales
300
Supongamos que el primer factor lineal ( a1 x + b1 ) se repite n veces; es decir, ( a1 x + b1 ) ocurre en la factorización de Q( x) , entonces, en vez del simple termino
n
A1 en la ( a1 x + b1 )
ecuación del primer caso, usamos A1 A2 Ar + + ... + 2 a1 x + b1 (a1 x + b1 ) (a1 x + b1 ) n
(7)
Como ilustración, veamos el siguiente ejemplo. 2s + 5 Ejemplo 3.16.1.3 Evalúe L−1 2 ( s − 3)
La expresión contiene un factor lineal repetido con n = 2 (donde n es el grado del polinomio, y en este caso del factor) por lo que la descomposición supuesta contiene dos fracciones parciales con numeradores constantes y denominadores cuyo grado se va decrementando. De tal manera que se escribe como (7) 2s + 5 A B = + (8) 2 s − 3 ( s − 3) 2 ( s − 3) En realidad no importa cual término se ponga primero, puede ir descendiendo el orden del denominador. Multiplicando ambos lados de (8), por el denominador del lado izquierdo obtenemos (2s + 5)( s − 3) 2 A( s − 3) 2 B( s − 3) 2 = + s−3 ( s − 3) 2 ( s − 3) 2
(9)
Simplificando 2 s + 5 = A( s − 3) + B Desarrollando y agrupando en base a las potencias de s el lado derecho del igual 2 s + 5 = As + ( −3 A + B )
Instituto Tecnológico de Chihuahua / C. Básicas
Amalia C. Aguirre Parres
3.16.1 Determinación de la trasformada inversa mediante el uso de las fracciones parciales
301
Asociando términos comunes tenemos dos ecuaciones
A = 2 y −3A + B = 5
(10)
Resolviendo (10), por sustitución , resulta que B = 11 En consecuencia la descomposición obtenida es 2s + 5 2 11 = + 2 s − 3 ( s − 3) 2 ( s − 3)
(11)
2s + 5 1 1 −1 Transformando inversamente (11), L−1 = 2 L−1 + 11L 2 2 s − 3 ( s − 3) ( s − 3)
Dando como resultado basado en las fórmulas de la tabla 3.1. 2s + 5 L−1 = 2e3t + 11te3t 2 ( s − 3)
Podemos resolver el problema anterior por otro método, por ejemplo observando la traslación en s . Aplicando el teorema 3.16.2, de la sección 3.16 ecuación 1.6
{
}
L−1 { F ( s − a )} = L−1 F ( s ) s → s − a = e at f ( t ) 1 2s + 5 −1 2 s + 5 −1 1 , tenemos A L−1 = 2L−1 L + 11L 2 2 2 ( s − 3) s s → s −3 s ( s − 3)
s → s −3
Obtenemos f (t ) = 2e3t + 11te3t
2 s + 5 11⋅ t⋅ exp( 3⋅ t) + 2⋅ exp( 3⋅ t) En MathCad L−1 = 2 ( s − 3)
Instituto Tecnológico de Chihuahua / C. Básicas
Amalia C. Aguirre Parres
3.16.1 Determinación de la trasformada inversa mediante el uso de las fracciones parciales
302
Posiblemente sea más sencillo, por eso debemos observar siempre detenidamente el problema, para decir la mejor opción para su solución CASO III. Q( x) contiene factores cuadráticos irreducibles, de los cuales ninguno se repite.
Si Q( x) tiene el factor ax 2 + bx + c , donde b 2 − 4ac < 0 , es decir factores cuadráticos irreducibles, o en otras palabras con raíces imaginarias, entonces, lo que hacemos, en base al caso I, agregamos un término lineal al numerador y en el denominador dejamos ese R( x) tendría un término de la factor cuadrático irreducible, es decir la expresión para Q( x) forma Ax + B ax + bx + c
(12)
2
donde A y B son las constantes a determinar.
Ejemplo 3.16.1.4 Siendo F ( s ) =
(s
Factorizando
(s
el denominador
2s − 4
2
+ s )( s 2 + 1) 2s − 4
2
+ s )( s + 1) 2
, determinar f (t )
=
2s − 4
s ( s + 1) ( s 2 + 1)
, observamos el tercer
factor del denominador, y vemos que es un factor cuadrático irreducible, es decir tiene raíces imaginarias. Descomponiendo en fracciones parciales 2s − 4
s ( s + 1) ( s + 1) 2
=
A B Cs + D + + 2 s s +1 s +1
(13)
Multiplicando ambos lados del igual por el denominador de lado izquierdo 2s − 4 = A ( s + 1) ( s 2 + 1) + B ( s ) ( s 2 + 1) + Cs ( s )( s + 1) + D ( s )( s + 1)
(14)
Desarrollando 2s − 4 = As 3 + As 2 + As + A + Bs 3 + Bs + Cs 3 + Cs 2 + Ds 2 + Ds
Instituto Tecnológico de Chihuahua / C. Básicas
Amalia C. Aguirre Parres
3.16.1 Determinación de la trasformada inversa mediante el uso de las fracciones parciales
303
Agrupando acorde a las potencias de s 2s − 4 = ( A + B + C ) s3 + ( A + C + D ) s 2 + ( A + B + D ) s + A
Asociando términos de la igualdad obtenemos las siguientes ecuaciones A = −4 ,
A+ B+C = 0,
A+C + D = 0
y
A+ B+ D = 2
O bien sustituyendo ese valor de A en las 3 ecuaciones restantes, obtenemos C = 4−B
(15)
C+D=4
(16)
B+D=6
(17)
De tal manera que sustituyendo, (15) en (16), obtenemos 4 − B + D = 4 por lo que −B + D = 0
(18)
y resolviéndola con (17), concluimos que D = 3,
B = 3,
A = −4
y
C =1
(19)
Sustituyendo los valores de (19) en (13), y antitransformando cada término, resulta s 1 1 1 −1 −1 f (t ) = −4L−1 + 3L−1 +L 2 + 3L 2 , finalmente s s + 1 s + 1 s + 1 f (t ) = −4 + 3e − t + cos ( t ) + 3sen ( t )
1 Ejemplo 3.16.1.5 Encontrar L−1 3 s + s 1 1 −1 Si factorizamos el denominador obtenemos L−1 3 =L 2 s + s s ( s + 1)
Instituto Tecnológico de Chihuahua / C. Básicas
Amalia C. Aguirre Parres
3.16.1 Determinación de la trasformada inversa mediante el uso de las fracciones parciales
304
Descompuesto en fracciones parciales tal como Bs + C 1 −1 A L−1 3 =L + 2 s +1 s + s s
(20)
Podemos observar en (20), que tenemos una suma de funciones para antitransformar, donde se aplica una de las propiedades de la linealidad. También se observa que es un caso I y III mezclados, trabajando con la ecuación (20), para determinar los valores de las constantes. 1
s ( s + 1) 2
=
A Bs + C , multiplicando por el denominador del lado izquierdo del igual + 2 s s +1
1 = A ( s 2 + 1) + ( Bs + C ) s s ( s 2 + 1) , o bien 1 = A ( s 2 + 1) + ( Bs 2 + Cs )
(21)
Podemos dar valores a s , y obtener ecuaciones y resolverlas por algún método conocido. Algunos valores pueden ser las raíces del denominador, como es,
(
) (
)
Si s = 0 al ser sustituida en la ecuación (21), resulta 1 = A ( 0 ) + 1 + B ( 0 ) + C ( 0 ) , 2
2
obtenemos A =1
(22)
Ahora tomamos s = 1 obtenemos 1 = A (1 + 1) + ( B + C ) , por lo que resulta 2A + B + C = 1
(23)
sustituyendo el valor de A = 1 queda B + C = −1
(24)
Si decidimos hacer s = −1 obtenemos que 1 = A (1 + 1) − ( − B + C ) resultando
Instituto Tecnológico de Chihuahua / C. Básicas
Amalia C. Aguirre Parres
3.16.1 Determinación de la trasformada inversa mediante el uso de las fracciones parciales
2A + B − C = 1
305
(25)
Sustituyendo el valor de A = 1 queda B − C = −1
(26) B + C = −1
Y resolviendo (24) y (26), B − C = −1 , obtenemos B = −1 y C = 0 2B =−2 Por lo que sustituyendo en (20) obtenemos −s 1 −1 1 L−1 3 =L + 2 s + s s s + 1 Aplicando la propiedad de linealidad, donde extraemos los coeficientes de la función y separamos los términos para antitransformar cada una de las fracciones s 1 −1 1 −1 L−1 3 = L −L 2 , aplicando fórmulas resultando s + s s s + 1 f (t ) = 1 − cos t
(27)
CASO IV. Q( x) contiene un factor cuadrático irreducible repetido
Si Q( x) tiene un factor (ax 2 + bx + c) n , donde b 2 − 4ac < 0 , entonces en vez de la simple fracción parcial del caso III, tenemos la suma An x + Bn A1 x + B1 A2 x + B2 + + ... + 2 2 2 ax + bx + c (ax + bx + c) (ax 2 + bx + c) n
Ejemplo 3.16.1.6 Determinar f (t ) , si F ( s ) =
(28)
1
(s
2
+ 1) ( s − 1) 2
Aquí observamos un caso IV en el denominador, un factor cuadrático irreducible, por lo que descomponemos en
Instituto Tecnológico de Chihuahua / C. Básicas
Amalia C. Aguirre Parres
3.16.1 Determinación de la trasformada inversa mediante el uso de las fracciones parciales
1
( s 2 + 1) ( s − 1) Si
As + B
=
2
(s
2
multiplicamos
+ 1)
+
Cs + D
( s 2 + 1)
ambos
2
+
lados
izquierdo ( s + 1) ( s − 1)
306
E s −1
(29)
del
igual
por
el
denominador
del
lado
2
2
1 = ( As + B ) ( s 2 + 1) ( s − 1) + ( Cs + D )( s − 1) + E ( s 2 + 1)
2
(30)
Para determinar los coeficientes, seguimos el método tradicional.
Desarrollamos los factores en MathCad ( A .s
B) . s
( C. s
D ) .( s
E. s
2
1
B) . s
A .s
A .s
4
1 .( s 1 ) C. s
2
( A .s
2
E. s 2
3
4
A .s
2
C.s
2
2 2 . E. s
1 .( s
A .s
1)
1) A .s
4
A .s
D.s
2
A .s
3
A .s
B.s
3
B. s
B. s
2
B
(31)
D
(32)
E ( C.s B.s
3
(33) D) .( s B. s
2
E. s
1)
B.s
B
2
C.s
1 2
2
=
C. s
D .s
D
E. s
4
2 2 . E. s
E
Agrupando en base a las potencias 1 = ( A + E ) s 4 + ( − A + B ) s 3 + ( A − B + C + 2 E ) s 2 + ( − A + B − C + D ) s + ( − B − D + E ) (34)
Obtenemos las siguientes ecuaciones, asociando los coeficientes de potencias iguales A+ E = 0
(35)
−A + B = 0
(36)
A − B + C + 2E = 0
(37)
Instituto Tecnológico de Chihuahua / C. Básicas
Amalia C. Aguirre Parres
3.16.1 Determinación de la trasformada inversa mediante el uso de las fracciones parciales
307
−A + B − C + D = 0
(38)
−B − D + E = 1
(39)
Utilizando los coeficientes y términos independientes, para obtener los valores de los coeficientes, por el método de eliminación de Gauss-Jordan. Realizando operaciones en los renglones del sistema (40), tales como 1 0 0 0 −1 1 0 0 1 −1 1 0 −1 1 −1 1 0 −1 0 −1
1 0 2 0 1
0 0 0 0 1
R2 + R1 → R2 R3 + R2 → R3 R4 + R3 → R4 R5 + R3 → R5
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1 0 0 1 0 −1
1 1 2 2 2
0 0 0 0 1
(40)
Seguimos manipulando los renglones, de tal manera que 1 0 0 0 1 R5 → R5 0 4
R2 − R5 → R2 R3 + ( −2 R5 ) → R3 R4 + ( −2 R5 ) → R4 R5 + R4 → R5 ,
0 1 0 0 0
0 0 0 0 1 0 0 1 0 −1
1 1 2 2 2
0 0 0 0 1
(41)
Finalmente hacemos la diagonal principal de unos (Gauss-Jordan)
Instituto Tecnológico de Chihuahua / C. Básicas
Amalia C. Aguirre Parres
3.16.1 Determinación de la trasformada inversa mediante el uso de las fracciones parciales
308
1 4 1 − 4 1 − 2 1 − 2 1 4
1 0 0 0 0 − R2 + R1 → R2
0 1 0 0 0
R3 + R2 → R3
0 0 1 0 0
R4 + R1 → R4
0 0 0 1 0
R5 + R3 → R5
0 0 0 0 1
Por lo que nuestros coeficientes serían 1 1 1 1 1 A=− , B=− , C =− , D=− , E= 4 4 2 2 4
(42)
Sustituyendo esos coeficientes en(29) 1 s 1 1 1 s 1 1 + 1 1 =− 2 − 2 − − 2 2 2 ( s 2 + 1) ( s − 1) 4 s + 1 4 s + 1 2 ( s 2 + 1) 2 ( s 2 + 1) 4 s − 1 1
(43)
Completando para poder utilizar fórmulas resulta 1 s 1 1 1 ( 2) s 1 2 (1) 1 1 =− 2 − + − 2 − 2 2 2 ( s 2 + 1) ( s − 1) 4 s + 1 4 s + 1 2 * 2 ( s 2 + 1) 2 * 2 ( s 2 + 1) 4 s − 1 1
Y antitransformando aplicando fórmulas de la tabla 3.1 y tabla 3.2 1 1 y (t ) = − cos ( t ) − sen ( t ) − 4 4
1 1 1 tsen ( t ) − sen ( t ) − t cos ( t ) + et 4 4 4
(44)
Simplificando (44), resulta 1 1 1 1 1 y (t ) = − cos ( t ) − sen ( t ) − tsen ( t ) + t cos ( t ) + et 4 2 4 4 4
Instituto Tecnológico de Chihuahua / C. Básicas
(45)
Amalia C. Aguirre Parres
3.16.1 Determinación de la trasformada inversa mediante el uso de las fracciones parciales
309
Utilizando MathCad para la descomposición en fracciones parciales 1 s
2
2
1 .( s
1)
1 . ( 4 ( s 1) )
1. (s
1)
1. (s
4 s
1
2
2
s
2
1) 1
2
Y la transformada inversa en MathCad, la cual coincide con (45) L
= 1 . exp( t ) 1 . cos ( t ) 1 .sin ( t ) 1 .t .cos ( t ) 1 . t . sin ( t )
1
1
s
2
1 .( s
2
1)
4
4
2
4
4
Ejemplo 3.16.1.7 Resuelva el problema y IV + 2 y" + y = 4tet con condiciones iniciales y (0) = 0 , y´(0) = 0 , y´´(0) = 0 y y´´´(0) = 0
Observemos primero que aplicando la transformada a ambos lados de la igualdad resulta s 4Y ( s ) − s 3 y (0) − s 2 y '(0) − sy ''(0) − y '''(0) + 2 s 2Y ( s) − 2 s y (0) − 2 y '(0) + Y ( s ) =
4 ( s − 1) 2
(46)
Sustituyendo condiciones iniciales en (46) y factorizando resulta Y ( s )( s 4 + 2s 2 + 1) =
4 ( s − 1) 2
(47)
Despejando (47), necesitamos obtener la transformada inversa de Y (s) =
4 4 , o bien de Y ( s ) = 2 2 ( s − 1) ( s + 2s + 1) ( s − 1) ( s 2 + 1) 2 2
4
Observemos que tenemos en el denominador un factor cuadrático irreducible y repetido, (caso IV), lo cual provoca que tengamos fracciones con el numerador siendo una función lineal, también tenemos un factor lineal repetido (caso II) Por lo que debemos descomponer en fracciones tales como 4 A B Cs + D Es + F = + + 2 + 2 2 2 2 s − 1 ( s + 1) 2 ( s − 1) ( s + 1) ( s − 1) s +1 2
Instituto Tecnológico de Chihuahua / C. Básicas
(48)
Amalia C. Aguirre Parres
3.16.1 Determinación de la trasformada inversa mediante el uso de las fracciones parciales
310
Si multiplicamos por el común denominador ( s − 1) 2 ( s 2 + 1) 2 , 4( s − 1) 2 ( s 2 + 1) 2 A( s − 1) 2 ( s 2 + 1) 2 B( s − 1) 2 ( s 2 + 1) 2 = + s −1 ( s − 1) 2 ( s 2 + 1) 2 ( s − 1) 2 (Cs + D)( s − 1) 2 ( s 2 + 1) 2 ( Es + F )( s − 1) 2 ( s 2 + 1) 2 + + s2 + 1 ( s 2 + 1) 2 Simplificando obtenemos la ecuación 4 = A( s 2 + 1) 2 + B( s − 1)( s 2 + 1) 2 + (Cs + D)( s − 1) 2 + ( Es + F )( s − 1) 2 ( s 2 + 1)
(49)
Mediante la sustitución s = 1 , resulta 4 = A(1 + 1) 2 + B(1 − 1)(1 + 1) 2 + (C + D)(1 − 1) 2 + ( E + F )(1 − 1) 2 (12 + 1) Simplificando, obtenemos 4 = 4A , así que A = 1 La ecuación (49), es una identidad que se cumple para todo valor de s . Para encontrar los coeficientes restantes, sustituimos sucesivamente los valores Si s = 0 4 = A ( 0 ) + 1 + B ( 0 ) − 1 ( 0 ) + 1 + C ( 0 ) + D ( 0 ) − 1 + E ( 0 ) + F ( 0 ) − 1 ( 0 ) + 1 2
2
2
2
Simplificando −B + D + F = 3
(50)
Si s = −1 −8 B − 4C + 4 D − 8 E + 8 F = 0
(51)
Si s = 2 25 B + 2C + D + 10 E + 5 F = −21
(52)
Si s = −2 −75 B − 18C + 9 D − 90 E + 45 F = −21
Instituto Tecnológico de Chihuahua / C. Básicas
(53)
Amalia C. Aguirre Parres
3.16.1 Determinación de la trasformada inversa mediante el uso de las fracciones parciales
311
Si s = 3 200 B + 12C + 5 D + 120 E + 40 F = −96
(54)
Un sistema de cinco ecuaciones lineales en B, C, D, E y F. ya sea por el método de ecuaciones simultáneas, por matrices o, como en este caso, valiéndonos de una calculadora capaz de resolver sistemas lineales encontramos que A = 1 , B = −2, C = 2, D = 0, E = 2 y F = 1
(55)
Sustituimos los coeficientes encontrados en el sistema y obtenemos así Y (s) =
1 2 2s 2s 1 − + 2 + 2 + 2 2 2 s − 1 ( s + 1) ( s − 1) s +1 s +1
(56)
Ahora bien, aplicando la antitransformada, o transformada inversa (56) 1 s 1 1 s −1 −1 − 2 L−1 + 2 L−1 2 L−1 {Y ( s )} = L−1 +2 L 2 +L 2 2 2 s − 1 s + 1 s + 1 ( s − 1) ( s + 1)
Obtenemos y (t ) = (t − 2)et + (t + 1) sen t + 2 cos t
(57)
Pero siguiendo otro método tradicional manual, puede asignar valores de s = i , o bien s 2 = ( i ) = −1 , pues i = −1 2
4 = A( s 2 + 1) 2 + B( s − 1)( s 2 + 1) 2 + (Cs + D)( s − 1) 2 + ( Es + F )( s − 1) 2 ( s 2 + 1) , donde 4 = A(−1 + 1) 2 + B(i − 1)(−1 + 1) 2 + (Ci + D)(i − 1) 2 + ( Ei + F )(i − 1) 2 (−1 + 1) Simplificando 4 = (Ci + D)(i − 1) 2 , desarrollando 4 = (Ci + D)(−1 − 2i + 1) 4 = (Ci + D)(−2i ) , 4 = 2C − 2 Di
Instituto Tecnológico de Chihuahua / C. Básicas
(58)
Amalia C. Aguirre Parres
3.16.1 Determinación de la trasformada inversa mediante el uso de las fracciones parciales
312
Asignando s = −i , o bien s 2 = ( −i ) = −1 , pues i = −1 2
4 = A( s 2 + 1) 2 + B( s − 1)( s 2 + 1) 2 + (Cs + D)( s − 1) 2 + ( Es + F )( s − 1) 2 ( s 2 + 1) Donde 4 = A(−1 + 1) 2 + B(−i − 1)(−1 + 1) 2 + (−Ci + D)(−i − 1) 2 + (− Ei + F )(−i − 1) 2 (−1 + 1) Simplificando 4 = (Ci + D)(i − 1) 2 , desarrollando 4 = (Ci + D)(−1 − 2i + 1) , 4 = (Ci + D)(−2i ) 4 = 2C − 2 Di
(59)
4 = (−Ci + D)(−i − 1) 2 , desarrollando 4 = (−Ci + D)(−1 + 2i + 1) , o bien 4 = 2C + 2 Di
(60)
Resolviendo las dos ecuaciones (59) y (60)
4 = 2C − 2 Di 4 = 2C + 2 Di , por lo que C = 2 y D = 0 8 = 4C Ahora contamos ya con tres valores, que al sustituirlo en 4 = A( s 2 + 1) 2 + B( s − 1)( s 2 + 1) 2 + (Cs + D)( s − 1) 2 + ( Es + F )( s − 1) 2 ( s 2 + 1) Nos queda 4 = ( s 2 + 1) 2 + B ( s − 1)( s 2 + 1)2 + (2s )( s − 1) 2 + ( Es + F )( s − 1) 2 ( s 2 + 1) Podemos darle valores a s en la igualdad y así obtendremos el resto de ecuaciones pero con menos incógnitas. Y los podremos resolver más fácilmente. Si hacemos s = 0 , obtenemos 3 = −B + F
(61)
Si hacemos s = −1 , obtenemos
Instituto Tecnológico de Chihuahua / C. Básicas
Amalia C. Aguirre Parres
3.16.1 Determinación de la trasformada inversa mediante el uso de las fracciones parciales
313
4 = (1 + 1) 2 + B(−1 − 1)(1 + 1) 2 + (−2)(−1 − 1) 2 + (− E + F )(−1 − 1) 2 (1 + 1) Obteniendo 4 = 4 + B( −2)(4) + (−2)(4) + (− E + F )(8) , finalmente 1 = −B − E + F
(62)
Si hacemos s = 2 , obtenemos 4 = (4 + 1) 2 + B (2 − 1)(4 + 1) 2 + (4)(2 − 1) 2 + (2 E + F )(4 + 1) Obteniendo 4 = 25 + 25 B + 4 + 5(2 Es + F ) , finalmente −5 = 5 B + 2 E + F
(63)
Teniendo(61), (62) y (63) para resolverlas 3 = − B + F , 1 = − B − E + F , −5 = 5 B + 2 E + F
−3 = B
(64) −F
Resolviendo (61)y (62)obtenemos que 1 = − B − E + F , de lo cual E = 2 , −2 = −E 5 = −5 B − 2 E − F
Resolviendo (62) y (63) obtenemos que 1 = − B − E + F , de lo cual B = −2 , 6 = −6 B − 3 E Y así ya obtuvimos el resto de incógnitas. Siendo los valores A = 1 , B = −2 , C = 2 , D = 0 , E = 2 y F = 1 , que son los valores indicados anteriormente. Ejemplo 3.16.1.8 En el Ejemplo 3.9.3 observamos un circuito en serie, donde i (t ) es la corriente y L, R y C son constantes, en un circuito como el de la figura está gobernado por la ecuación integro-diferencial
L
di 1 t + Ri (t ) + ∫ i ( τ ) d τ = E (t ) dt C 0
Instituto Tecnológico de Chihuahua / C. Básicas
(65)
Amalia C. Aguirre Parres
3.16.1 Determinación de la trasformada inversa mediante el uso de las fracciones parciales
314
Figura 3.16.1.1 Circuito RLC
Determinar la corriente i (t ) en el circuito LRC en serie, cuando L = 0.1h , R = 2Ω y C = 0.1 f , i (0) = 0 y el voltaje aplicado es E (t ) = 120t − 120u (t − 1) Sustituyendo valores en (65) 0.1
t di + 2i + 10∫ i ( τ ) d τ = 120t − 120u (t − 1) 0 dt
(66)
Transformando ambos lados de la igualdad de (66), y multiplicando todo por 10 sI ( s ) + 20 I ( s ) + 100
I ( s) 1 1 1 = 1200 2 − 2 e − s − e − s s s s s
Multiplicando el lado izquierdo del igual por s s 2 I ( s ) + 20sI ( s ) + 100
sI ( s ) s
Factorizando I ( s ) ,
I ( s) 2 ( s + 20s + 100 ) s
(67)
I ( s) 2 1 1 1 s + 20s + 100 ) = 1200 2 − 2 e − s − e − s ( s s s s Multiplicamos (68) por s , usando s 2 + 20 s + 100 = ( s + 10 )
Instituto Tecnológico de Chihuahua / C. Básicas
(68) 2
Amalia C. Aguirre Parres
3.16.1 Determinación de la trasformada inversa mediante el uso de las fracciones parciales
315
1 1 1 −s −s − − I ( s ) = 1200 e e 2 2 2 s ( s + 10 ) s ( s + 10 ) ( s + 10 )
Descomponemos en fracciones parciales −
1 s ( s + 10 )
2
e− s −
1
( s + 10 )
2
1 s ( s + 10 )
2
(69)
y sabiendo que
1 1 − e− s = e− s − s ( s + 10 )2 ( s + 10 )2
Utilizando MathCad, para encontrar las fracciones parciales, tenemos que 1 s ⋅ ( s + 10) −
2
=
1 s ⋅ ( s + 10)
2
1 100⋅ s
−
1
−
10⋅ ( s + 10) 1
( s + 10)
2
=
−1 100⋅ s
2
−
1 100⋅ ( s + 10) 9
−
10⋅ ( s + 10)
2
+
1 100⋅ ( s + 10)
Por lo que 1 1 1 1 1 1 100 100 1 I (s) = 1200 − − 10 2 − 100 e− s + 100 e− s + 10 2 e− s − e− s (70) 2 s + 10 ( s + 10) s s + 10 ( s + 10) ( s + 10) s
Transformando inversamente (70) y aplicando el teorema de traslación de t obtenemos i (t ) = 12 1 − u ( t -1) − 12 e −10t − e −10( t −1) u ( t -1) − 120te −10t − 1080 ( t − 1) e−10( t −1) u ( t -1) Ejemplo 3.16.1.9 Del ejemplo 3.9.4, el circuito RLC que se muestra en la figura 3.16.1.2
Donde R = 110Ω , L = 1 h , C = 0.001 f , i (0) = 0
90 0 ≤ t < 1 E (t ) = 1≤ t 0
Expresamos el voltaje en términos de la función escalón, por lo que E (t ) = 90 − 90u (t − 1)
Instituto Tecnológico de Chihuahua / C. Básicas
Amalia C. Aguirre Parres
3.16.1 Determinación de la trasformada inversa mediante el uso de las fracciones parciales
316
Figura 3.16.1.2 Circuito RLC
La ecuación que se genera es una ecuación integro-diferencial tal como L
di 1 t + Ri (t ) + ∫ i ( τ ) d τ = E (t ) dt C 0
(71)
Sustituyendo valores en (71) t di + 110i (t ) + 1000∫ i ( τ ) d τ = 90(1 − u (t − 1) 0 dt
Dado que L
{∫ i ( τ) d τ} = I (ss) t
0
⇒
sI ( s ) + 110 I ( s ) + 1000
I ( s ) 90 = (1 − e − s ) s s
s 2 + 110 s + 1000 90 1000 90 −s = − ⇒ I ( s ) s + 110 + e 1 = (1 − e − s ) I s ( ) ( ) s s s s
Despejando I ( s ) , I ( s) =
90 (1 − e− s ) ( s + 10 )( s + 100 )
(72)
Trabajando con la fracción de (72) resulta
Instituto Tecnológico de Chihuahua / C. Básicas
Amalia C. Aguirre Parres
3.16.1 Determinación de la trasformada inversa mediante el uso de las fracciones parciales
317
90 A B = − ( s + 10 )( s + 100 ) s + 10 s + 100
(73)
Sustituyéndola en (72) 1 −S 1 1 1 − − I (s) = −e s + 10 s + 100 s + 10 s + 100 por lo que 1 1 −S 1 −S 1 −1 −1 −1 i ( t ) = L−1 −L − L e + L e s + 10 s + 100 s + 10 s + 100 Aplicando fórmulas y teorema de traslación en t i (t ) = e −10t − e−100t − u ( t − 1) e −10 ( t −1) − e −100 ( t −1)
Instituto Tecnológico de Chihuahua / C. Básicas
Amalia C. Aguirre Parres