GUIA DE APRENDIZAJE. Lógico- matemático. Saber- Saber: Identificar situaciones donde aparecen los números enteros

Subdirección de Educación Departamento de Educación Contratada Colegio CAFAM “Bellavista” CED Fecha: GUIA DE APRENDIZAJE Guía No: 2 Pensamiento: Do
Author:  Xavier Moreno Soto

2 downloads 97 Views 753KB Size

Recommend Stories


El plan de saber a donde ir: caso Krispy Kreme
El plan de saber a donde ir: caso Krispy Kreme. UNIVERSIDAD IBEROAMERICANA EL PLAN DE SABER A DONDE IR: CASO KRISPY KREME ESTUDIO DE CASO Que para

Manual de la entrevista psicológica. Saber escuchar, saber preguntar
Manual de la entrevista psicológica Saber escuchar, saber preguntar Coordinadora Conxa Perpiñá Manual de la entrevista psicológica Saber escuchar,

INÉS ARREDONDO: EL ARTE DE SABER DECIR Y SABER CALLAR
México, Distrito Federal I Marzo-Abril 2009 I Año 4 I Número 19 INÉS ARREDONDO: EL ARTE DE SABER DECIR Y SABER CALLAR Claudia Albarrán Instituto Tec

La transposición didáctica Del saber sabio al saber enseñado
La transposición didáctica Del saber sabio al saber enseñado Yves Chevallard AIQUE Grupo Editor Título original: La transposition didactique. Du savo

Story Transcript

Subdirección de Educación Departamento de Educación Contratada Colegio CAFAM “Bellavista” CED Fecha:

GUIA DE APRENDIZAJE Guía No: 2

Pensamiento:

Docente: JUAN CARLOS RIAÑO BENAVIDES

Lógico- matemático

Asignatura: Matemáticas Grado: SEXTO A

Saber- Saber: Identificar situaciones donde aparecen los números enteros.

Saber Hacer: Establecer relaciones de orden entre números enteros Saber Ser: Resolver situaciones que implique el uso de los números enteros

Un albatros vuela sobre el mar a una altura de 150 m, para luego caer en picada y sumergirse a una profundidad de 5m y atrapar un pez, luego sale del agua volando hasta una altura de 10 m. ¿Cuánta distancia recorrió el albatros?

Prerrequisitos y preconceptos: Para que el estudiante pueda trabajar este tema debe:  

Identificar las relaciones de orden entre los números naturales Realizar las operaciones básicas en el conjunto natural.

Nueva Información: Números enteros Hasta el día de hoy se han trabajado los números naturales (N) y se habían planteado que cierto tipo de restas no se podían hacer, pero esto ya es posible: 5-7=-2 ¿Por qué? Piensa en una deuda de $7, tienes solo $5 para pagar y quedas debiendo $2, los números negativos comenzaron a usarse como indicadores de ganancias y deudas desde hace mucho tiempo; en el año 628 dC el matemático hindú Brahmagupta distingue tres tipos de números en el uso comercial:

Uso comercial

Lenguaje matemático

Bienes: lo que se tiene

Los números positivos: 1, 2, 3, 4….

Deudas: lo que se debe

Los números negativos: -1,-2,-3…..

La nada

El cero: 0

La unión de los tres tipos de números conforman el conjunto de números enteros (Z) ¿En dónde se usan los números enteros? a. Como vimos en deudas y ganancias. b. Alturas con respecto al mar: donde todo lo que está bajo el nivel del mar es negativa, si esta sobre nivel del mar es positivo. c. Temperaturas en °C: si las temperaturas están bajo cero son negativas, si están sobre cero son positivas. ¿Cómo se ordenan los enteros? Se puede hacer esto usando la recta numérica, donde cero es el origen, en el lado izquierdo van los números negativos, a la derecha están los positivos. Todo número entero con excepción de cero tiene un opuesto Si trabajamos un entero como -5, te darás cuenta que al otro del cero tiene su opuesto (5), porque están a la misma distancia de cero pero en lados opuestos, además cumplen la siguiente propiedad:

“si se suman dos números opuestos el resultado será cero” 5+(-5)=0 Valor absoluto El valor absoluto de todo entero, es la distancia que tiene un número entero cualquiera hasta cero (sin importar el signo) el resultado de este siempre será positivo:

Plano cartesiano: Una idea que amplía el concepto de la recta numérica, es el plano cartesiano el cual está formado por dos rectas numéricas que se cortan perpendicularmente en cero (origen), este tipo de graficas fue creado por el matemático francés Renato Descartes, de su apellido proviene el nombre de la gráfica: Recta

eje

nombre

Horizontal

X

Abscisa

Vertical

y

ordenada

Un punto en el plano cartesiano se puede representar como la pareja de números (a, b) donde a es x , b es y. Representa los siguientes puntos: A (3,4) B(0,2) C(-2,4) D (-3,-4)

Además se puede tener en cuenta que: Recta

Sentido

Punto cardinal

X

Positivo

Este (oriente)

X

Negativo

Oeste (occidente)

Y

Positivo

Norte

Y

negativo

sur

Orden dentro de los números enteros Otra idea que surge al usar la recta numérica es el orden, básicamente se resume así “entre más a la derecha este ubicado un número entero es mayor, entre más a la izquierda es menor”

Como 4 está a la derecha de -3 4>-3 y -3(mayor que) y < (menor que)

Multiplicación y división de números enteros Para multiplicar y dividir números enteros debes aprenderte las siguientes reglas de signos: 1) Si multiplicas o divides dos números enteros positivos, el signo del producto o cociente será siempre positivo. Veamos los siguientes ejemplos: +16 x +3 = +48 +48 : +3 = +16 2) Al multiplicar o dividir dos números enteros negativos, el signo del producto o cociente será siempre positivo. Observemos los ejemplos a continuación: -12 x -4 = +48 -12 : -4 = +3 3) Por último, si multiplicamos o dividimos dos números enteros de distinto signo, es decir, uno positivo y otro negativo, el producto o cociente será siempre negativo. Veamos estos ejemplos: +50 x -2 = -100 +60 : -6 = -10 -50 x +2 = -100 -60 : +6 = -10

Si te aprendes estas sencillas reglas de signos, no tendrás problemas para multiplicar y dividir en Z, se resumen en la siguiente tabla:

Potenciación La potenciación es la operación que consiste en multiplicar un número por sí mismo las veces que indica el exponente. Pero como se trabajan signos positivos y negativos, se siguen las siguientes reglas:

Ejemplos: (-5)0= 1 (-5)1= -5 (-5)2= 25 (-5)3= -125 (-5)4= 625

Propiedades de la potenciación

RADICACIÓN La operación que consiste en hallar la base, conocidos el exponente y la potencia, se llama radicación. Calcular la raíz enésima de un número entero es encontrar otro número que elevado a

un exponente n sea igual al primero: La potenciación y la radicación son operaciones inversas.

Ejemplo: Raíz cuadrada de un número entero Las raíces cuadradas de números enteros tienen dos signos: positivo y negativo. Ejemplo:

El radicando es siempre un número positivo o igual a cero, ya que se trata del cuadrado número. Ejemplo: Porque no existe un número que multiplicado por sí mismo de -16. ¿Qué es una ecuacion? Una expresion que compara dos cantidades mediante el signo igual obviamente sera denominado igualdad, pero existen igualdades que que contienen letras (incognitas o variables) a ese tipo de igualdades llamaremos ecuacion. Un ejemplo es la expresion x+5=11, la cual es sencilla de resolver ya que 11-5=6 si lo hacemos de manera aritmetica (de momento trabajaremos este tipo de ecuaciones que llamaremos aditivas), pero existe otro metodo para resolverla que llamaremos forma algebraica o despeje, para ello debemos tener en cuenta dos propiedades: Inverso aditivo

Propiedad uniforme

Todo numero entero tiene un opuesto, que al Para que una igualdad se conserve se debe sumarse con este da como resultado cero hacer la misma operación a ambos lados de la

Ej, 5 su inverso aditivo es -5 ya que 5+(-5)=0

igualdad con el mismo numero Ej 5=5 si sumamos 2 a ambos lados 5+2=5+2 entonces la igualdad se conserva.

Hay que tener en cuenta que: Miembro izquierdo X +5

relación =

miembro derecho 11

Ahora si resolvemos usando las dos propiedades mencionadas X+5=11 expresion original (la cual se lee un numero aumentado en cinco es igual a once) lo que debemos hacer es dejar la x sola, para ello buscamos un numero que sumado con cinco de como resultado cero, en este caso es cinco negativo (-5) el cual operamos a ambos lados. X+5-5=11-5 asi el resultado es x=6 que ya habiamos visto anteriormente. Si queremos demostrar el resultado se reemplaza el valor obtenido en la ecuacion original. X+5=11 donde x=6 por lo tanto (6)+5=11 haciendo la operación 11=11 Yo podria resolverla solo restando y es cierto. pero que pasaria si nos dieran una ecuación como esta: x-1/4 =3/2 ¿Qué se hace en este caso? __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________

Integración: . Responda verdadero (V) o Falso (F) justificando su respuesta en tu cuaderno de ciencias 

Los enteros están conformados por los números negativos, positivos y el cero ( )



Los enteros se usan para representar las partes que se toman de un objeto ( )



Las temperaturas bajo cero pueden ser +50°c o 120°c



El valor absoluto es la distancia de un entero hasta cero sin importar el signo ( )



El orden en los enteros se da de acuerdo a la posición en la recta numérica ( )



El producto de dos números con igual signo es negativo( )



Una ecuación es una igualdad con incógnita ( )

APLICACIÓN

Recordación:



Escribe un resumen sobre los números enteros y sus operaciones

Refinamiento 1. Describe con ejemplos el uso de los números enteros en tu hogar o barrio. 2. Escribe un vocabulario sobre expresiones algebraicas (mínimo 20 expresiones) 3. Dibuja tu casa usando lo visto en clase de dibujo técnico

TRABAJO INDIVIDUAL 1. Encuentra en la sopa de letras palabras relacionadas con el tema:

2. Resuelve las siguientes operaciones y encierra naturales:

los resultados que no pertenecen a los

a. 96+46

d. 101-110

b. 46-96

e. 17-23

c. 121-121

f.

g. 30+15

15-30

3. Determina el opuesto de cada número entero: a. -18

d. -321

g. –(-92)

b. 22

e. -835

h. –(-(-48))

c. -9 f. M 4. Determina el valor absoluto de los siguientes números: a. -5

d. 64

b. -8

e. -100

c. 6

f.

g. m

–x

5. la siguiente tabla muestra las temperaturas promedio en °c de una ciudad en diferentes meses del año. Mes

temperatura

enero

-10

marzo

0

junio

10

agosto

8

septiembre

3

noviembre

-2

Ordena los números del menor al mayor (puedes ayudarte ubicándolos en la recta numérica) 6. escribe > , < o = según el caso: a. 4___-4

c. -3___-9

b. 23___-23

d. -3___-8

e. 20___-20

Operaciones con enteros: 1. Ordenar, en sentido creciente, representar gráficamente, y cal cular los opuestos y valores absolutos de los siguientes números enteros: 8, −6, −5, 3, −2, 4, −4, 0, 7 2. Representar gráficamente, y calcular los opuestos y valores absolutos de los siguientes números enteros: −4, 6, −2, 1, −5, 0, 9 3. Realizar las siguientes operaciones con números enteros: a.

(3 − 8) + [5 − (−2)] =

b.

5 − [6 − 2 − (1 − 8) − 3 + 6] + 5 =

c.

9 : [6 : (− 2)] =

d.

[(−2) 5 − (−3) 3 ] 2 =

e.

(5 + 3 · 2 : 6 − 4 ) · (4 : 2 − 3 + 6) : (7 − 8 : 2 − 2) 2 =

f.

[(17 − 15) 3 + (7 − 12) 2 ] : [(6 − 7) · (12 − 23)] =

4. Realizar las siguientes operaciones con números enteros: a.

(7 − 2 + 4) − (2 − 5) =

b.

1 − (5 − 3 + 2) − [5 − (6 − 3 + 1) − 2]=

c.

−12 · 3 + 18 : (−12 : 6 + 8) =

5. Calcula, si existe: a.

(−9) 2 =

b.

(−1) 7 =

c.

(−3) 2 · (−3) =

d.

e.

(−3) 3 =

f.

6.

Realizar las siguientes operaciones con potencias de números enteros:

a.

(−2) 2 · (−2) 3 · (−2) 4 =

b.

(−8) · (−2) 2 · (−2) 0 (−2) =

c.

(−2) − 2 · (−2) 3 · (−2) 4 =

d.

2−2 · 2−3 · 24 =

e.

22 : 23 =

f.

2 -2 : 2 3 =

g.

2 2 : 2 -3 =

h.

2 -2 : 2 - 3 =

i.

[(−2) − 2 ]

j.

3

· (−2) 3 · (−2) 4 =

[(−2) 6 : (−2) 3 ] 3 · (−2) · (−2) − 4 =

7. Realizar las siguientes operaciones con potencias de números enteros: a. b. c.

(−3) 1 · (−3) 3 · (−3) 4 = (−27) · (−3) · (−3) 2 · (−3) 0 = (−3) 2 · (−3) 3 · (−3) − 4 =

d.

3−2 · 3−4 · 34 =

e.

52 : 53 =

f.

5-2 : 53 =

g.

5 2 : 5 -3 =

h.

5 -2 : 5 - 3 =

i.

(−3) 1 · [(−3) 3 ] 2 · (−3) − 4 =

j.

[(−3) 6 : (−3) 3 ] 3 · (−3) 0 · (−3) − 4 =

Ecuaciones Escribe las siguientes ecuaciones en forma de frase, luego r esuélvelas: 1. X+8=4

6. r-4=-8

2. 7=m+9

7. -6=p+3

3. a-5=3

8. -3+q=-2

4. n-9= -2

9. 9=2+n

5. z-70=-3

10. -18=-25-d

Sólidos y dibujo técnico Construcción en Pequeño Grupo: 1. Lee la siguiente situación: Un guardabosque parte de su estación de vigilancia (ubicada en el punto 0,0 del plano cartesiano) y se recorre 5 Km al este, luego se dirige al nacimiento de una quebrada a 10 Km, después se dirigió 14 Km al oeste, luego 17 Km al sur, más tarde 9 Km al este y finalmente volvió a la estación. a. Dibuja en un plano cartesiano la ruta del guardabosque. b. Ubica las coordenadas de los sitios donde el guardabosque cambio de dirección y escríbelas como pareja ordenada (x,y) c. ¿Cuál fue la distancia total recorrida por el guardabosque? 2.

Observen la siguiente gráfica y respondan las preguntas: En la gráfica se muestran las temperaturas que alcanzo cierto material al ser sometido a varios procesos químicas durante ocho horas. a. ¿Qué temperatura alcanzo el material a las 15:00? b. ¿A qué hora alcanzo el material los 2°c? c. ¿Cuál fue la variación de temperatura entre las 10:00 y las 12.00? d. ¿Cuál fue la temperatura máxima y la mínima? e. ¿Cuál fue la variación de temperatura entre las 9:00 y las 14:00? 3. Diseñen un folleto por cada uno de los temas vistos en el periodo, para socializarlo con el grupo.

RECAPITULACIÓN

Socialización al Gran Grupo: En grupos de 4 personas diseñen un folleto sobre cómo usar los números enteros y compártanlo con sus compañeros

Reflexión: resuelve 1. Tres aspectos nuevos que he aprendido en esta unidad son.... 2.- Identifica al menos dos dificultades que tuviste, desde tu perspectiva, para el buen desarrollo de tu aprendizaje. 3.- Identifica al menos un área de oportunidad, en cuanto a tu desempeño como persona, (o un aspecto en el que debas mejorar). 4. Tres valores que considero haber trabajado en este tiempo son... 5. Mi participación en el equipo la considero....

Verificación: 1. Revisión de los puntos de la guía 2. Revisión del material de exposición y participación en la mesa redonda

3. Revisión del taller trabajado en grupo, al azar se escogerá un cuaderno por cada pequeño grupo y la valoración alcanzada será para todo el equipo. 4. Revisión de la coevaluación, reflexión y regulación Coevaluación: Puntos a considerar en la coevaluación a tus compañeros. Anota el nombre de cada uno de tus compañeros de equipo y evalúalos (Sí/No) tomando en consideración los siguientes aspectos: 1. Estuvo al pendiente del proceso de la tarea del equipo, comunicándose oportunamente y participando activamente sugiriendo ideas, compartiendo conocimientos e ideas. 2. Demostró responsabilidad en el desempeño del grupo, colocando sus avances oportunamente, y preocupándose por el enriquecimiento y mejora de la tarea. 3. Se comunicaba en forma clara, concisa y cordial con el grupo, aceptando las diferencias de opinión y estableciendo sus propios puntos de vista. 4. Estimulo la reflexión acerca del proceso del grupo haciendo un análisis del desempeño del equipo con el propósito de mejorarlo.

Regulación: 1. Escribe los aspectos a mejorar en la guía 2. Identifica las fortalezas de la guía 3. Los comentarios generales que quisiera expresar al maestro. “He lamentado profundamente no haber avanzado al menos lo suficiente como para comprender algo de los grandes principios fundamentales de las matemáticas, pues los hombres que los dominan parecen poseer un sexto sentido” -Charles Darwin.

Get in touch

Social

© Copyright 2013 - 2024 MYDOKUMENT.COM - All rights reserved.