Story Transcript
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 1
MATEMÁTICAS
UNIDAD 2
GRADO 6º
TEORÍA DE CONJUNTOS
1
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 2
LOGRO: Estudia, analiza y profundiza los conceptos fundamentales de la teoría de conjuntos, básicos para llegar a la comprensión de situaciones de la vida diaria a partir de la conversión del lenguaje natural al lenguaje de conjuntos
INDICADORES DE LOGRO: Identifica las relaciones entre conjuntos. Distingue las diferentes clases de conjuntos. Representa gráficamente los conjuntos. Realiza las diferentes operaciones entre conjuntos. Resuelve problemas con conjuntos.
¿QUÉ ES PARA TI UN CONJUNTO?
2
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 3
Reseña histórica: La teoría de conjuntos es una de las partes de la matemática que se desarrolló desde fines del siglo XIX. Ha introducido términos como pertenencia, inclusión, unión y otros con significados rigurosos y su uso sin dudas ha permitido mejorar la precisión del lenguaje en áreas de conocimiento como la teoría de relaciones y funciones, la teoría de las probabilidades y otras. Conocerla, al menos en sus aspectos fundamentales, es una necesidad para cualquier estudiante de ciencias, por ello su presencia en estos módulos para educación rural.
TRABAJEMOS EN NUESTRO APRENDIZAJE
ACTIVIDAD Escribe con tus palabras el significado de los siguientes términos, aclarando en que se diferencia de los otros; luego socializa con tus compañeros de curso y concluyan entre todos cual es la definición más acertada: Agrupación:___________________________________________ _________________________________________________________ _________________________________________________________ _________________________________________________________ _________________________________________________________
3
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 4
Equipo:_______________________________________________ _________________________________________________________ _________________________________________________________ _________________________________________________________ _________________________________________________________ __________ Colección:_____________________________________________ _________________________________________________________ _________________________________________________________ _________________________________________________________ _________________________________________________________ ____________ Conjunto:_____________________________________________ _________________________________________________________ _________________________________________________________ _________________________________________________________ _________________________________________________________ ____________
Definición y generalidades Las nociones de conjunto y de elemento son ideas primitivas que se presentan en forma intuitiva; es decir que son cosas tan cotidianas para todos nosotros, que son difíciles de definir o decir qué son. Los conjuntos están relacionados con el proceso de contar y por lo tanto permiten resolver problemas que involucran el concepto de cantidad. Se puede afirmar que un conjunto es una colección de objetos, símbolos o entidades bien definidas, que reciben el nombre de miembros o elementos del conjunto. Por ende, los objetos, elementos o seres individuales que componen un conjunto es a lo que de ahora en adelante llamaremos ELEMENTOS.
4
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 5
TRABAJEMOS EN NUESTRO APRENDIZAJE ACTIVIDAD Trabaja ésta actividad en tu cuaderno para una mayor comodidad 1. Di los elementos que componen a cada uno de los siguientes conjuntos: a. Los objetos necesarios para coger café b. Los objetos que tienes en la mano para recibir clase c. Las personas que componen tu familia d. Los colores del arco iris e. Los alimentos que componen tu desayuno 2. De los siguientes problemas, selecciona uno, argumenta cuáles son las posibles causas y forma un conjunto con ellas, luego propone posibles soluciones y forma otro conjunto con ellas. a. b. c. d.
Violencia en tu vereda La demora en la cosecha de café Desempleo Analfabetismo en tu vereda
3. Casa, carro, bus, piedra, café, Sócrates, luz, canasta, azúl. Con los seres y objetos dados inicialmente, ¿puedes formar un conjunto? Argumenta por qué y si lo puedes formar dale un nombre.
5
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 6
Aprendamos algo nuevo Una forma sencilla de visualizar los conjuntos y las relaciones entre ellos, es mediante la utilización de esquemas gráficos llamados círculos de Euler o diagramas de Venn. Estos esquemas están compuestos por una región cerrada del plano (generalmente un rectángulo), la cual representa el conjunto universal, y por uno o varios círculos que representan los conjuntos a graficar. Generalmente, los conjuntos se identifican con letras mayúsculas y sus elementos con minúsculas. Para indicar que un elemento es un miembro de un conjunto, se utiliza el símbolo “∈” (se lee pertenece a) y para indicar que no está en el conjunto se utiliza el símbolo “∉” (se lee no pertenece a).
Ejemplo: Esta sería la representación gráfica para decir que x ∈A ó que x ∉ A U
U A
A
x x
6
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 7
TRABAJEMOS EN NUESTRO APRENDIZAJE ACTIVIDAD: Teniendo el conjunto A = {2, 4, 6, 8, b, m, n, u, i, 1, 7, p}define cuál de los elementos pertenece al conjunto poniendo los símbolos ∈si pertenece y ∉ si no pertenece: b_______________ al conjunto A 5_______________ al conjunto A 13______________ al conjunto A U_______________ al conjunto A 9 _______________ al conjunto A 8_______________ al conjunto A
Aprendamos algo nuevo Formas para determinar un conjunto Básicamente existen dos formas para determinar un conjunto, éstas son:
Por extensión Un conjunto está determinado por extensión cuando se describe el conjunto nombrando cada uno de sus elementos. Por ejemplo: 7
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 8
A = {2, 4, 6, 8} B = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} C = {1, 3, 5, 7, 9, 11, 13, 17, 19,…} D = {a, e, i, o, u }
Por comprensión Un conjunto está determinado por comprensión cuando se nombra una propiedad, una regla o una característica común a los elementos del conjunto. Por ejemplo: C = {Números impares menores que 10} D = {Vocales} B = {Dígitos} Lenguaje: E = {x ∈N / 0 ≤ x < 9}, en este caso se utiliza un lenguaje muy específico, el cual se lee así: E igual al conjunto de todos los números reales tales que (o que verifican que) cero (0) es menor o igual a x, y, x a su vez es menor que 9, esta notación se usa con mucha frecuencia paradescribir intervalos o partes de conjuntos tan grandes como lo son los números reales. Este tipo de escritura también pertenece a la determinación de un conjunto por comprensión. Ejemplo: S = {x/x es una vocal} se lee: las x tales que x es una vocal y su determinación por extensión sería: S= {a, e, i, o, u}
8
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 9
TRABAJEMOS EN NUESTRO APRENDIZAJE ACTIVIDAD Elabora una lista de todos los elementos que pertenecen al conjunto de: o Las vocales o Los números del 1 al 10 o Las partes de una planta o Las consonantes de la palabra Sebastián o Los países de sur américa o Las materias que estudias Diga a que conjuntos pertenecen los siguientes elementos (nombra una característica común de los siguientes elementos) o o o o o
a, e, i, o, u 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 Blanco, negro, azul, rojo, verde, negro, naranjado Cuaderno, lápiz, lapicero, borrador, sacapuntas. Sala, comedor, alcoba, baño, solar, patio, balcón.
o o o o o
Diga cuales son los elementos de los siguientes conjuntos: S = {x/x es un planeta del sistema solar} E = {x/x es una vereda de Barbosa} A = {x/x es uno de los últimos 3 presidentes de Colombia} S = {x/x es un profesor del colegio cooperativo rural} S = {x/x es un planeta del sistema solar}
En los puntos anteriores determinaste conjuntos por comprensión y por extensión. 9
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 10
¿Cómo se determina un conjunto por comprensión? (en tus palabras) ¿Cómo se determina un conjunto por extensión? (en tus palabras)
Aprendamos algo nuevo CLASES DE CONJUNTOS Existen conjuntos como por ejemplo: A = {x ∈R / 0 ≤ x < 9} óZ = {x ∈N / x es par} Que no se pueden expresar por extensión debido a que nunca se terminaría de escribir la lista de los números reales que pertenecen al conjunto A, o, los naturales que pertenecen a Z, este tipo de conjuntos, reciben el nombre de INFINITOS: Mientras que otros, como por ejemplo: C = {x / x es vocal} óD = {x / x es dígito par} Que están formados por cierto número de elementos distintos, reciben el nombre de conjuntos FINITOS. La diferencia entre un tipo de conjuntos y el otro es que en los conjuntos finitos, se hace posible nombrarlos por extensión, mientras que los conjuntos finitos se pueden nombrar por comprensión o por extensión.
10
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 11
TRABAJEMOS EN NUESTRO APRENDIZAJE ACTIVIDAD: En tu cauderno intenta escribir por extensión los siguientes conjuntos, luego determina si es finito o infinito. P= { x/x es un cultivo producido en Barbosa} P= { x/x es un número par} P= { x/x es un número impar} P= { x/x es un colegio de Barbosa} P= { x/x es una placa de carro} P= { x/x es un nombre de niño} P= { x/x es capital de Antioquia} P= { x/x es capital de Colombia} P= { x/x es el Alcalde de Barbosa} P= { x/x es un municipio del nordeste Antioqueño} P= { x/x es un cultivo producido en Barbosa} P= { x/x es una letra del abecedario}
11
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 12
P= { x/x es una vocal de la palabra murcielago} P= { x/x es un delantero de la celección colombia } P= { x/x es una especie animal}
Aprendamos algo nuevo En la actividad anterior encontraste algunos conjuntos que sabias que eran finitos y sin embargo no nombraste sus elementos porque eran demasiado largos como para nombrarlos, sin embargo encontraste otros que eran demasiado fáciles de nombrar porque se componían por un solo elemento; este ripo de conjuntos se denomina conjunto unitario.y su representación gráfica es: U A
8
A={8} es un conjunto unitario
Ahora intenta determinar por extensión los siguientes conjuntos: Los paises que hacen parte de América y Europa _________________________________________________________ Los Colombianos que han sido presidentes de Estados Unidos
12
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 13
_________________________________________________________ Las mujeres que han sido presidentas de Colombia _________________________________________________________ {x/x es un número par e impar} _________________________________________________________ {x/x es el hijo de el papa Benedicto XVI}. _________________________________________________________ Como puedes ver, estos conjuntos no tienen ni un solo elemento que cumpla con la descripción, estos conjuntos se denominan conjunto vacio y su característica principal es que no poseen elementos. Y se representan por Ф o {}.
TRABAJEMOS EN NUESTRO APRENDIZAJE ACTIVIDAD: En tu cuaderno define 10 conjuntos vacios y compartelos con tus compañeros de clase.
13
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 14
Aprendamos algo nuevo Subconjuntos Un conjunto A es un subconjunto de un conjunto B, si todo elemento del conjunto A también es elemento del conjunto B; es decir, un subconjunto es un conjunto más pequeño que otro conjunto mayor y que a su vez está absolutamente contenido en éste conjunto mayor. Simbólicamente esta relación se expresa así: A Ϲ B (se lee A esta contenido en B) si todo elemento x que está en el conjunto A entonces x también está en B, es decir; A Ϲ B si todo x ∈ A, entonces x ∈ B Ejemplo: B:{x/x es un número entre 1 y 10}, entonces B:{1,2,3,4,5,6,7,8,9,10} A: {x/x es un número entre 1 y 5}, entonces A: {1, 2, 3, 4, 5}
U B
A6 7 8 10
1 9 2 3 4 5 14
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 15
Un resultado muy útil e importante acerca de la contenencia entre conjuntos es el siguiente: Si A es un subconjunto de B y B es un subconjunto de C, entonces, A es un subconjunto de C; Simbólicamente este enunciado se escribe así:
Sí A ϹB y B ϹC, entonces, A ϹC Igualdad entre conjuntos El conjunto A es igual al conjunto B si ambos conjuntos tienen los mismos elementos, es decir, si todos los elementos de A pertenecen a B y si todos los elementos de B pertenecen al conjunto A, en términos de inclusión se podría afirmar que A está incluido en B y que B está incluido en A. La igualdad entre conjuntos se simboliza de la siguiente forma: A = B si A ϹB y B ϹA Ejemplo 1. Si M = {1, 1, 0, 2} y N = {2, 1, 0, 1}, claramente se observa que M ϹN y que N ϹM, por lo tanto M = N. Ejemplo 2. Si A = {x / x es dígito} y B = {x / x es dígito par}, se puede observar que B ϹA pero A ⊄B, por lo tanto el conjunto A no es igual al conjunto B, lo cual se escribe, A ¹ B. CONJUNTOS DISYUNTOS: Los conjuntos disyuntos son también llamados conjuntos completamente diferentes y este nombre los define de una excelente forma ya que los conjuntos disyuntos son los que no coinciden en 15
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 16
ninguno de sus elementeos, es decir no tienen ningún elemento en común. Ejemplo 1: A: {x/x son los números entre el 1 y el 10} B: {x/x son las letras del abecedario} Si tomamos estos dos conjuntos y los escribimos por extensión en vez de por comprensión nos daremos cuenta de que no tienen ni un elemento en común, por lo tanto son disyuntos. Ejemplo 2: A: {x/x estudia en el cooperativo en grado décimo} B: {x/x estudia en el cooperativo en grado tercero} Al igual que en el ejemplo anterior estos conjuntos no tienen algún elemento en común por lo tanto son disyuntos.
TRABAJEMOS EN NUESTRO APRENDIZAJE ACTIVIDAD: Determina cuales de los siguientes pares de conjuntos son iguales o cuales son subconjunto de cuales escribiendolo en la notación correcta según lo visto previamente, para la notación utilice los espacios que se dejan en la parte inferior del par de conjuntos: A:{x/x es un animal roedor} B:{x/x es un animal mamifero}
16
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 17
_____
_____
_____
A:{x/x es una marca de leche} B:{x/x es una marca de alimento lácteo} _____
_____
_____
A:{x/x es un estudiante del colegio cooperativo rural} B:{x/x es un estudeiante del colegio cooperativo} _____
_____
_____
A:{x/x es una marca de ropa} B:{x/x es una marca de camisas} _____
_____
_____
A:{x/x es una marca de motocicleta} B:{x/x es una marca de vehiculo} _____
_____
_____
A:{x/x es una raza de perros} B:{x/x es un animal cuadrúpedo} _____
_____
_____
A:{x/x es un cultivo de Barbosa} B:{x/x es una fruta cultivada en Barbosa} _____
_____
_____
17
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 18
A:{x/xes un colegio de Barbosa} B:{x/x es un colegio privado de Barbosa}
Aprendamos algo nuevo Operaciones entre conjuntos Así como las operaciones suma, resta, multiplicación y división están definidas sobre los números reales, también existen operaciones definidas entre los conjuntos como la unión, intersección, complemento,diferencia, diferencia simétrica y producto cartesiano; éstas se estudiarán en las siguientes secciones.
Unión Si A y B son dos conjuntos no vacíos, se define la unión entre A y B como el conjunto de todos los elementos que pertenecen al conjunto A o al conjunto B; es decir, en la unión de los conjuntos deben aparecer todos los elementos que pertenezcan a A o que pertenezcan a B. Simbólicamente y utilizando algunos conectivos lógicos de los que vimos en la unidad anterior de lógica, la unión se define así:
A U B = {x / x ∈A v x ∈B},
donde el símbolo “v” se lee
“o” y es sacado de la lógica proposicional para relacionarlo directamente con la unión en la teoría de conjuntos, por lo que en el futuro cuando observes este símbolo “v”lo puedes relacionar inmediatamente con la unión de conjuntos.
18
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 19
Para representar gráficamente una operación entre conjuntos, se debe tener en cuenta la relación que existaentre ellos, según los siguientes casos:
Caso 1. Que los conjuntos no tengan ningún elemento en común. (Conjuntos disyuntos). A: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} B: {a, b, c, d, e} Es claro que estos conjuntos son disyuntos porque no tienen ningún elemento que esté en ambos conjuntos al mismo tiempo; por lo tanto: A U B: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, a, b, c, d, e}
Caso 2. Que los conjuntos tengan sólo unos elementos en común. A: {1, 2, 3, 4, 5, 6, 7} B: {4, 5, 6, 7, 8, 9, 10} En este caso se deben seleccionar todos los elementos que están en ambos conjuntos pero escribiendo una sola vez los elementos que están al mismo tiempo en ambos conjuntos; por lo tanto: A U B: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Caso 3. Que un conjunto esté contenido en el otro. A: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} B:{4, 5, 6, 7} En este caso la unión de estos dos conjuntos es simplemente el conjunto mayor que contiene al menor; por lo tanto:
19
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 20
A U B: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
TRABAJEMOS EN NUESTRO APRENDIZAJE ACTIVIDAD: Hallar la unión de los siguientes grupos de conjuntos: A: {a, b, c, d, e};
B: {a, e, i, o, u}
A U B: __________________________________________________ A: {1, 2, 3, 4, 5};
B: {a, 1, 3, e, 4, 5, 3, e}
A U B: __________________________________________________ A: {perro, gato, gallina, vaca}; B: {arroz, papa, yuca, plátano} A U B: __________________________________________________ A: {a, b, c, d, e};
B: {a, e, i, o, u}; C: {p, q, e, w, r, t, y, u, i}
A U B U C _________________________________________________ {x/x es una vocal ves un número entre 1 y 10} A U B: __________________________________________________ {x/x es letra del abecedario ves un número natural menor que 5} A U B: __________________________________________________
20
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 21
Aprendamos algo nuevo Intersección Se define la intersección entre dos conjuntos A y B como el conjunto formado por todos los elementos que pertenecen al mismo tiempo al conjunto A y al conjunto B. Simbólicamente la intersección se expresa así:
A
∩B = {x / x ∈A ʌx ∈B}
El símbolo “∩” se lee intersección y el símbolo “
ʌ” se lee y, siendo
sacado de la lógica proposicional y en adelante se relacionado siempre con la intersección de conjuntos. La intersección también se puede ver según algunos casos:
encontrará
Caso 1. Que los conjuntos no tengan ningún elemento en común. (Conjuntos disyuntos). A: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} B: {a, b, c, d, e} En este caso no existe algún elemento que pertenezca conjuntos al mismo tiempo; por lo tanto:
a los dos
A ∩B: {}
21
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 22
Caso 2. Que los conjuntos tengan sólo unos elementos encomún. A: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} B: {1, 3, 5, 7, 9, 11, 13, 15, 17, 19) En este caso se seleccionan los elementos comunes en los dos conjuntos y ese es nuestro conjunto intersección, por lo tanto: A ∩B: {1, 3, 5, 7, 9}
Caso 3. Que un conjunto este contenido en el otro. A: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} B:{4, 5, 6, 7} Según la definición de intersección se deben seleccionar los elementos comunes que para este caso son todos los pertenecientes al conjunto menor, por lo tanto: A ∩B: {4, 5, 6, 7} Para hallar la intersección A∩B∩C, se puede encontrar la intersección de Acon By luego conel conjunto C, sin importar el orden de las intersecciones que halles primero porque al final se encontrarán los elementos que pertenecen a todos los conjuntos,es decir, hay que encontrar los elementos que están en los tres conjuntos: A, B y C.
22
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 23
TRABAJEMOS EN NUESTRO APRENDIZAJE ACTIVIDAD: Hallar la intersección de los siguientes grupos de conjuntos; en tu cuaderno intenta realizar la representación gráfica de cada una de las soluciones de los numerales.
A: {1, 2, 3, 4, 5};
B: {a, 1, 3, e, 4, 5, 3, e}
A ∩ B: __________________________________________________ A: {perro, gato, gallina, vaca}; B: {arroz, papa, yuca, plátano} A ∩ B: __________________________________________________ A: {a, b, c, d, e};
B: {a, e, i, o, u}; C: {p, q, e, w, r, t, y, u, i}
A ∩ B ∩ C _________________________________________________ A: {n, m, p, q, r};
B: {1, 2, 3, 4, 5}; C: {casa}
A ∩ B ∩ C _________________________________________________ A: {perro, gato, gallina, vaca}; B: {a, e, i, o, u}; Z: {1, 2, 3, 4,5} A ∩ B ∩ Z _________________________________________________
23
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 24
Aprendamos algo nuevo Diferencia Según los tres casos estudiados, se puede afirmar que al comparar dos conjuntos no vacíos, puede suceder que: No tengan ningún elemento en común, (conjuntos totalmente diferentes). Sólo algunos elementos sean comunes, (conjuntos parcialmente diferentes o parcialmente iguales) Un conjunto este contenido en el otro. Tengan exactamente los mismos elementos, (conjuntos iguales) En los tres primeros numeralesse puede formar un conjunto con los elementos que le faltan a un conjunto para ser igual a otro, este conjunto así formado, se denomina diferencia entre conjuntos; también se puede decir que la diferencia entre conjuntos se compone de los elementos que tiene uno conjunto pero no tiene el otro. Si A y B son dos conjuntos no vacíos, entonces se define la diferencia entre A y B así:
A – B = {x / x ∈A, ʌ, x ∉B}; es decir, todos los elementos que pertenecen a A y no pertenecen a B Caso 1. Que los conjuntos no tengan ningún elemento en común. (conjuntos disyuntos).
24
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 25
A = {1,2,3,4} B = {5,6,7} Aquí los elementos que le faltan a B para llegar a ser A o los elementos que tiene A que no tiene B, serían todos los elementos del mismo A y por lo tanto
A – B = A = {1,2,3,4} De la misma forma, los elementos que le faltan a A para llegar a B o que tiene B que no tiene A, son todos los elementos de B y por lo tanto
B – A = B = {5,6,7} Caso 2. Que los conjuntos tengan sólo unos elementos en común. A = {1,2,3,4,5,6} B = {5,6,7} Como los elementos que tiene A que no tiene B son numerables entonces
A – B = {1,2,3,4} Como los elementos que tiene B que no tiene A es uno solo, entonces
B – A = {7} Caso 3. Que un conjunto este contenido en el otro. A = {1,2,3,4,5,6,7} B = {5,6,7}
A – B = {1,2,3,4} 25
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 26
En este caso se puede observar que al conjunto A no le falta nada para llegar a ser el conjunto B, antes le sobran elementos, por lo tanto:
B–A={} Complemento de un conjunto: El complemento A´ de un conjunto A son todos los elementos que pertenecen al conjunto universal U pero no perteneces a A; Ejemplo:
U U: {x/x es un dígito} A: {x/x es un dígito impar} B: {x/x es un digito par} A´: {0, 2, 4, 6, 8} B´: {0, 1, 3, 5, 7, 9}
0 A
B 1 3 5 7 9
2 4 6 8
TRABAJEMOS EN NUESTRO APRENDIZAJE ACTIVIDAD: En tu cuaderno inventa 5 conjuntos universales con dos subconjuntos cada uno, halla la diferencia entre ellos y luego halla el complemento de cada uno de los subconjuntos.
26
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 27
Recolectemos lo aprendido
Trabaja estas actividades en tu cuaderno para una mayor comodidad: 1.
Dados los conjuntos
U: {a, b, c, d, e, v, 1, 2, 3}
A: {a, c, d, 2, 3}
B: {b, c, d, 1}
Encuentra el conjunto indicado y elabora su respectiva gráfica o diagrama de Venn. a. A-B b. B-A c. A´ d. B´ e. (A-B)´ f. (B-A)´ 2. Determina los conjuntos por extensión, encuentra A-B, AUB, A∩B, B-A, A´ y B´, luego elabora su respectiva gráfica o diagrama de Venn. a. U: {x/x es un numero natural menor que 10} A: {x/x es un número natural impar menor que 11} B: {x/x es un número primo menor que 10} b. U: {x/x es un dia de la semana} A: {x/x es un día de la semana cuyo nombre termina en s} B: {x/x es un día de la semana cuyo nombre empieza por M}
27
Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia 28
c. U: {x/x es un mes del año} A: {x/x es un mes del año que tiene 31 días} B: {x/x es un mes del año que no tiene 31 días} 3. Dados los conjuntos U: {x/x es un número natural menor que 12} A: {x/x es un número natural par mayor que 4 y menor que 10} B: {x/x es un número natural par menor que 13} C: {x/x es un número natural impar menor que 9} D: {x/x es un número primo igual o menor que 11} Determina a. AUB b. A∩B c. A-B d. AUC e. DUC f. DUB g. D´ h. A´ i. B´ j. C∩B k. (A-B)´U (BUA) l. (A-B)´∩ (BUA) m. (A∩B)∩ (BUA) n. B-A o. D∩B
28