Story Transcript
Colección Banca Central y Sociedad
BANCO CENTRAL DE VENEZUELA
Mecanismos de transmisión de la política monetaria en Venezuela Adriana Arreaza Norka Ayala María Amelia Fernández
Serie Documentos de Trabajo Gerencia de Investigaciones Económicas
Diciembre 2001
34
Resumen En este trabajo se emplea la técnica de los vectores autorregresivos estructurales para investigar los mecanismos de transmisión de la política monetaria en Venezuela. Se estima igualmente una función de reacción para el Banco Central. Se emplean datos mensuales entre 1989 y 2000, y como variable de política se utiliza un agregado monetario. Los resultados de la estimación de la función de reacción del Banco Central sugieren que tanto el crédito del Banco Central como M1 exhiben incrementos permanentes frente a shocks positivos en el nivel de precios, y respuestas transitorias ante shocks de origen fiscal. Las fluctuaciones del producto en el muy corto plazo parecen no producir cambios en la dirección de la política monetaria. En respuesta a shocks positivos en las reservas internacionales, la autoridad monetaria parece responder en forma rezagada con recortes de liquidez. Al controlar por variables fiscales y cambiarias que intervienen en la función de reacción del Banco Central, se logra eliminar el problema de la paradoja de los precios en los modelos de mecanismos de transmisión. El modelo del mecanismo de crédito es el que parece ajustar mejor los datos, lo cual sugiere que este mecanismo puede estar operando en nuestra economía. Abstract In this paper we use structural VARs to study the transmission mechanisms of monetary policy in Venezuela. We also estimate a reaction function for the Central Bank. We use monthly data from 1989 until 2000. We use monetary aggregates —credit of the Central Bank and M1— as policy variables. The estimates of the reaction function suggest that a positive shock in prices implies a permanent increase in the policy variables, and that positive shocks on fiscal variables induce a positive and transitory response of the monetary aggregates. Positive innovations on international reserves seem to produce lagged cuts on liquidity. By controling for fiscal and international finance variables that are significant in the reaction function, we are able to eliminate the price puzzle in the different models of transmission mechanism we tested. The credit channel model seems to fit the data adequately, which suggests that this channel may be operating in our economy.
Mecanismo de transmisión de la política monetaria en Venezuela
Adriana Arreaza Norka Ayala María Amelia Fernández
Índice general 1. INTRODUCCIÓN .................................................................................7 2. LA POLÍTICA MONETARIA EN VENEZUELA ............................................9 3. MECANISMOS DE TRANSMISIÓN DE LA POLÍTICA MONETARIA ...............13 3.1 El mecanismo monetario ......................................................13 3.2 El mecanismo del crédito .....................................................14 3.3 El mecanismo cambiario ......................................................15 4. ANÁLISIS EMPÍRICO ........................................................................18 4.1 Función de reacción del Banco Central................................23 4.2 Mecanismos de transmisión .................................................26 4.2.1 Mecanismo monetario..................................................26 4.2.2 Mecanismo del crédito .................................................27 5. CONCLUSIONES ..............................................................................31 ANEXO ..............................................................................................33 REFERENCIAS .....................................................................................55
1. Introducción Uno de los objetivos fundamentales del Banco Central de Venezuela es defender el valor interno de la moneda. Para ello se hace necesario determinar en qué medida y de qué manera las acciones de política monetaria se filtran al resto de la economía y finalmente a la dinámica de los precios. Igualmente, resulta relevante analizar cómo responde la política monetaria ante fluctuaciones en el producto y los precios, es decir, si la política monetaria sigue algo similar a una regla de Taylor o si la efectividad de la misma se ve afectada por variables fiscales y cambiarias, como se espera en el caso venezolano. En la presente investigación se utilizó la técnica de vectores autorregresivos (VAR) estructurales debido a que, en nuestro criterio, permite obtener resultados más confiables que los alcanzados usando VAR tradicionales. En los VAR tradicionales, generalmente se emplea la descomposición de Choleski para obtener las innovaciones estructurales a partir de los residuos estimados, para luego calcular las funciones impulso-respuesta. Ello implica suponer que los errores estructurales se derivan mediante un proceso recursivo, lo cual puede incluir supuestos de identificación poco adecuados. Por el contrario, los VAR estructurales permiten imponer las restricciones que se consideren apropiadas para derivar las innovaciones estructurales a partir de los residuos estimados. Un antecedente en el caso venezolano lo constituye el estudio de Guerra, Rodríguez y Sánchez (1998) quienes utilizan VAR tradicionales y de corrección de error con datos de frecuencia trimestral. Dada nuestra preocupación por los grados de libertad en las estimaciones, se optó por utilizar datos mensuales, siendo que las series del PIB trimestral sólo están disponibles a partir de principios de los noventa. El documento se estructura de la siguiente manera: en la segunda sección se presenta un análisis de la conducción de la política mone7
taria en Venezuela con especial énfasis en la década de los noventa. En la tercera sección se exponen brevemente los principales mecanismos de transmisión de la política monetaria. En la cuarta sección se encuentran los resultados econométricos de la estimación de la función de reacción del Banco Central y de los mecanismos de transmisión. Por último, se exponen las conclusiones del estudio.
8
2. La política monetaria en Venezuela Desde sus inicios, el objeto del Banco Central de Venezuela como instituto encargado de la política monetaria ha sido crear y mantener las condiciones monetarias, crediticias y cambiarias favorables a la estabilidad de la moneda, al equilibrio económico y al desarrollo ordenado de la economía, así como asegurar los pagos internacionales1. Tal y como se muestra en el Cuadro N° 1 en el Anexo, los instrumentos de política comúnmente utilizados para lograr los objetivos trazados han sido el encaje legal, la asistencia financiera a través de los anticipos y redescuentos y las operaciones de mercado abierto2. Sin embargo, a partir de 1989 con el programa de ajuste macroeconómico, implementado a raíz de un acuerdo con el Fondo Monetario Internacional, los mecanismos indirectos de control monetario comenzaron a tener mayor importancia y efectividad, ante la necesidad de una actuación más activa por parte del Banco Central de Venezuela que le permitiera propiciar el equilibrio en los mercados monetario y cambiario. Anteriormente (con excepción de septiembre de 1981 y febrero de 1984), la efectividad de estos mecanismos indirectos fue solapada al actuar conjuntamente con mecanismos directos como el manejo discrecional de las tasas de interés y establecimiento de requerimientos mínimos de cartera crediticia con tasas de interés preferenciales para diversas actividades (sector construcción y agropecuario).
1 La Ley del Banco Central de Venezuela de 2000, establece más explícitamente que el objeto es lograr la estabilidad de precios y preservar el valor de la moneda. 2 Si bien han sido los instrumentos más comunes, en ocasiones se han utilizado otros instrumentos específicos, con el fin de mantener el mercado en equilibrio. Por ejemplo, la asistencia financiera indirecta de 1985 con la creación de Fogade y Fococam (luego sustituida por Ficam).
9
En 1989 las operaciones de mercado abierto pasaron a ser el instrumento de política preponderante, con la particularidad de emisión de títulos propios del Banco Central de Venezuela. Desde entonces, hasta octubre de 19993, la política monetaria ha tenido un carácter contractivo, salvo en 1994 a raíz de la crisis financiera, y se ha basado principalmente en la utilización de mecanismos indirectos de control monetario4. Una limitación al impacto y efectividad de la política monetaria en Venezuela a lo largo de la década de los noventa ha sido la presencia de regímenes cambiarios con distintos grados de predeterminación. En este sentido, el compromiso de cumplir con el régimen cambiario, particularmente a partir de la implementación en 1996 del régimen de bandas, ha propiciado una participación más activa del Banco Central de Venezuela dentro del mercado cambiario. De hecho, en los últimos años la venta de divisas ha sido utilizada como (o ha servido de) instrumento de control monetario, hasta ser el instrumento de ajuste más importante en el último semestre del 2000. En cuanto a la forma de conducir la política monetaria, la Ley del Banco Central de Venezuela establece que durante el primer mes de cada semestre, el Directorio del Banco aprobará las directrices de la política monetaria que contenga las metas y estrategias que orientarán su acción. Para propósitos operativos, el Banco diseña un programa monetario que consiste en la determinación, fijación y seguimiento de una meta monetaria intermedia, consistente con los objetivos finales del programa económico. En 1984 se elaboró el primer modelo de programación monetaria, con el fin de controlar la inflación a través de la liquidez monetaria (M2) como meta intermedia. Sin embargo, su ejecución estuvo limitada
3 En este mes ocurrió la última emisión de los TEM. 4 En ocasiones, el BCV ha hecho uso del manejo discrecional de tasas de interés, como en el caso de 1998, cuando se elevaron significativamente las tasas de interés anual, que cobra por la asistencia crediticia a la banca y por el incumplimiento del encaje (Ver Cuadro N° 1 en el Anexo). Aunque el resultado de repunte general de las tasas de interés en 1998, también estuvo incentivado por las Operaciones de Mercado Abierto.
10
por los controles del tipo de cambio y de tasas de interés impuestos en ese período. Con el programa de ajuste de 1989 se rediseñó el modelo y oficialmente comenzó a ejecutarse el programa monetario. Desde entonces, la meta ha dependido del esquema cambiario vigente. A saber, con tipo de cambio flexible y flotación libre de las tasas de interés, se ha utilizado el dinero base como meta intermedia. Mientras que bajo un esquema de tipo de cambio fijo o predeterminado, como el de bandas de fluctuación, la variable intermedia ha sido el crédito interno neto5. En el Cuadro N°1 se esquematizan los objetivos finales, metas intermedias y variables instrumentales del programa monetario venezolano, bajo los distintos escenarios de tasas de interés y de tipo de cambio. Con relación a los resultados obtenidos, cabe resaltar que hasta 1998 claramente se expresaba en los informes económicos del Banco Central de Venezuela que la programación monetario-financiera había permitido ajustar los niveles de intervención del Instituto en el mercado monetario y cambiario, para corregir desvíos ocasionados por la incidencia de la gestión fiscal y los cambios autónomos en la demanda de dinero. Cuadro N° 1 Programa monetario de Venezuela Período
Objetivos finales 1989-92 Inflación
Meta monetaria intermedia1/ Dinero base.
1993-99 - Inflación. - Sostenibilidad del tipo de cambio nominal.
Crédito interno neto.
2000
Crédito interno neto y dinero base.
-Inflación. -Sostenibilidad del tipo de cambio nominal prefijado.
Variable instrumental Operaciones de mercado abierto con emisión de títulos propios (Bonos Cero Cupón (BCC)).
Escenario -Programa económico bajo el acuerdo del FMI. - Tipo de cambio flexible. - Flotación de las tasas de interés. Operaciones de mercado -Desde 1996 la “Agenda abierto con emisión de Venezuela”. títulos propios (en 1995 -Tipo de cambio fijo o los BCC fueron sustituidos predeterminado. (Control por los Títulos de de cambio y desde 1996 Estabilización Monetaria banda de fluctuación (TEM)). cambiaria). -Flotación de las tasas de interés. Venta de divisas. -Banda de fluctuación cambiaria. -Flotación de las tasas de interés.
Fuente: BCV 1/ Variable final del programa monetario
5 “En situaciones ambiguas en cuanto al rol del tipo de cambio y de las reservas internacionales dentro de la estrategia de política económica o cuando se inicia un programa de estabilización, es recomendable hacer un seguimiento a la base monetaria, aunque la variable meta sea el activo interno neto”, Mirabal (1999).
11
A pesar de los lineamientos de política establecidos por el Directorio del Banco Central de Venezuela y del diseño del programa monetario, en la práctica la ejecución de la política monetaria ha estado condicionada también a la política fiscal, más específicamente, el carácter expansivo o restrictivo de la política monetaria ha estado inversamente determinado por la ejecución del gasto fiscal. Como señala Mirabal (1999), mejoras fiscales asociadas a incrementos en los precios del petróleo inducen incrementos en el nivel de monetización que requieren una actuación más restrictiva del BCV. Asimismo, la diversidad de objetivos que ha pretendido alcanzar la política monetaria en determinados períodos, junto a circunstancias como interrupción de los programas de ajustes, la crisis financiera, controles de cambio, han limitado su eficiencia en el logro de sus objetivos generales. Por otro lado, con relación a los instrumentos de política, Mirabal (1999), señala que “la eficacia del instrumento para lograr los objetivos de política ha estado condicionada, en algunos casos, por la alta incidencia expansiva del gasto público y en otros debido a la caída recurrente de la demanda de dinero…”. Tenemos pues, que la política monetaria en Venezuela en la última década se ha fundamentado en una programación financiera orientada hacia el control de agregados monetarios y condicionada por la política cambiaria y la política fiscal.
12
3. Mecanismos de transmisión de la política monetaria Existen diversos modelos para explicar los canales a través de los cuales los instrumentos de política monetaria pueden afectar las variables objetivo, como pueden ser la inflación, el nivel de activos externos netos o el tipo de cambio6. En esta sección se exponen brevemente los principales mecanismos de transmisión de la política monetaria, a saber, el mecanismo monetario, el canal del crédito, y el mecanismo cambiario para economías abiertas. Este breve análisis que presentamos de la evolución y diferencias de los mecanismos más discutidos en la literatura reciente se basa en Neumann (1995) y Cecchetti (1995). 3.1El mecanismo monetario El mecanismo tradicional empleado en los libros de texto para explicar la transmisión de la política monetaria al resto de la economía es el mecanismo del dinero introducido por Keynes en su Teoría General. En este mecanismo se agregan todos los activos de la economía en dos categorías: monetarios y no monetarios. Los últimos, recogen tanto activos financieros como bienes de capital, suponiendo que ambos son sustitutos perfectos. Este supuesto de perfecta sustitución entre bienes de capital y activos financieros es lo que permite que la política monetaria se transmita a la demanda agregada mediante una tasa de interés única y que la elasticidad de la demanda de dinero sea el único determinante de la efectividad de la política monetaria. De este modelo se deriva la clásica interpretación de que una reducción de la cantidad de dinero aumenta el costo del crédito, reduciendo ello la inversión al eliminarse los proyectos marginalmente menos rentables y por ende induciendo caídas en la demanda agregada.
6 Ver Taylor (2000) para una comparación entre varios modelos existentes en la literatura.
13
Las restricciones analíticas de esta teoría condujeron a desarrollos posteriores como aquella de los precios relativos o teoría monetaria para explicar los mecanismos de transmisión (Brainard y Tobin, 1963). Según esta explicación, a diferencia de la teoría keynesiana, los activos financieros y de capital son sustitutos imperfectos. Ello implica que cambios inesperados en la oferta de dinero alteran todos los precios relativos, induciendo cambios en la composición del portafolio de los agentes y por consiguiente en sus decisiones de consumo e inversión. Por lo tanto, el impacto de la política monetaria puede ser entendido a través de la caracterización de cómo cambia la composición de la tenencia de activos. Dado que en estos modelos no se consideran imperfecciones de mercado, ante cualquier caída de la inversión sólo los proyectos menos productivos dejan de financiarse, haciendo que la distribución del financiamiento disponible entre sectores sea socialmente eficiente. 3.2 El mecanismo del crédito La presencia del canal de crédito puede amplificar los efectos del mecanismo tradicional de la política monetaria. Esta teoría considera los efectos de la hoja de balance de las empresas y los efectos de los préstamos a través de intermediarios. La presencia de imperfecciones en el mercado de crédito hace más complejo el cálculo de la eficiencia marginal de los proyectos de inversión. En cuanto a la situación del balance de las empresas, ésta tiene implicaciones sobre la capacidad de adquirir préstamos, debido a problemas de asimetría de información y de riesgo moral en los mercados. Las políticas de restricción de liquidez pueden reducir las ventas futuras e incrementar el valor real del endeudamiento, lo cual deterioraría el valor de las empresas reflejado en los balances. Con esto, las empresas pierden capacidad de contraer nuevo endeudamiento, dado que se estarían generando incentivos para subestimar el riesgo de los proyectos de inversión potenciales. Como resultado, aumenta la prima de riesgo para nuevos créditos de las empresas. El efecto de la hoja de balance implica que la curva de la eficiencia marginal de la inversión depende de la proporción de deuda de la empresa. Por ende, dado un cambio en la tasa de retorno del dinero, los prestamistas estarán dispuestos a conceder menos crédito para un proyecto de inversión determinado en tanto mayor sea el nivel de deuda del inversor potencial. Bajo este mecanis14
mo, la política monetaria tiene un impacto distributivo dado que afecta de manera disímil a los agentes dependiendo de su grado de endeudamiento. Esto explica cómo pequeños cambios en las tasas de interés pueden tener un impacto importante en la inversión. Otra explicación para el canal del crédito se basa en el supuesto clave de que existen empresas que sólo pueden financiarse mediante préstamos bancarios (pequeñas y medianas empresas que no pueden participar en el mercado de capitales). Otro supuesto importante es que los activos del portafolio de los agentes se distribuyen entre dinero, préstamos y todos los demás activos. Una reducción de la cantidad de dinero tiene un efecto contractivo en las reservas de los bancos y por ende en los depósitos, lo cual puede traducirse en una reducción del crédito. Esto impide que las empresas que se financian únicamente mediante créditos obtengan préstamos para nuevos proyectos de inversión, en ausencia de sustitutos cercanos a los créditos. De operar este mecanismo en la economía, los efectos de la política monetaria son distributivos desigualmente, pues afectan particularmente a los prestatarios que dependen exclusivamente del crédito. 3.3 El mecanismo cambiario En economías abiertas, las acciones de política afectan también el comportamiento del tipo de cambio, lo cual puede distribuirse al resto de las variables de la economía. Cabrera y Lagos (2000) esbozan este mecanismo basándose en un modelo desarrollado en Kamin (1996) que intenta explicar la apreciación del tipo de cambio real durante procesos de estabilización basados en anclajes cambiarios. El modelo se centra en la dinámica del tipo de cambio real en el corto y mediano plazo, con base en desequilibrios entre la demanda y la oferta de bienes transables y no transables. Los supuestos básicos del modelo son: una economía pequeña y abierta que produce bienes transables y no transables; el capital es específico a ambos sectores, el factor trabajo es móvil entre sectores y cuenta con rendimientos decrecientes, el precio doméstico de los transables se determina por el tipo de cambio nominal y el nivel inter15
nacional de precios; el precio relativo de los no transables se determina a partir del equilibrio de la oferta y la demanda. Los productores en cada sector maximizan su beneficio. El tipo de cambio real se define como el precio de los bienes transables con relación a los no transables. En este contexto, una expansión monetaria que genere un exceso de gasto sobre el producto ocasionará un exceso de demanda en los mercados de bienes transables y no transables. En presencia de flujos de capital, el desequilibrio en el mercado de bienes transables se traduce en un incremento de las importaciones financiado por la cuenta de capitales. Esto hace que los desbalances en la cuenta comercial no se traduzcan, en el corto plazo, en movimientos en el tipo de cambio nominal. Debido a esto, el precio de los bienes transables no se altera. Por el contrario, en el mercado de no transables el exceso de demanda genera un incremento en el precio de estos bienes, resultando ello en una reducción en el tipo de cambio real. La versión del modelo es la siguiente: TCREt = a0 – a1 (G/Y)t πtn = b(TCRt-1 – TCREt-1)
a1 > 0 b>0
(1) (2)
El tipo de cambio real de “equilibrio”, TCRE, se define en este modelo como aquél que vacía el mercado de los bienes no transables para un nivel dado de la demanda agregada en el corto y mediano plazo. Este concepto difiere del concepto tradicional de tipo de cambio real de equilibrio como el tipo de cambio que induce el equilibrio sostenible en la cuenta corriente para un nivel de producto determinado por los fundamentos de la economía, pues el interés del modelo se centra en observar la dinámica del tipo de cambio real en el corto y mediano plazo. La ecuación (1) representa pues, el equilibrio en el mercado de bienes no transables, donde el TCRE depende inversamente de la brecha gasto-producto, G/Y. La ecuación (2) refleja un proceso de ajuste parcial de los precios de los bienes no transables, πn, respecto a la brecha entre el tipo de cambio real efectivo y el de equilibrio. Sustituyendo (1) en (2) obtenemos: πtn = -ba0 + bTCRt-1 + ba1(G/Y)t-1
16
(3)
La ecuación (3) supone que el precio de los no transables se desliza uniformemente en el tiempo para cerrar la brecha entre el tipo de cambio actual y el de equilibrio. Ante un incremento en la brecha gasto-producto, el TCRE cae y el ajuste hacia el nuevo equilibrio se concreta vía incrementos en la inflación en los bienes no transables con la consiguiente apreciación del TCR. De esta manera, πn dependerá del tipo de cambio real y de (G/Y). En este contexto, los efectos de los instrumentos de política monetaria y el objetivo de política (inflación, tipo de cambio, reservas, entre otros), deberá pasar por la relación gasto-producto. Por ejemplo, una contracción de base monetaria que produzca un alza en las tasas de interés, reducirá la brecha gasto-producto incrementando el tipo de cambio real de equilibrio. En un régimen de tipo de cambio predeterminado, esto reducirá las presiones inflacionarias en los bienes no transables.
17
4. Análisis empírico En este estudio se emplea la metodología de los vectores autorregresivos estructurales. La ventaja que ofrece este método, propuesto inicialmente por Sims (1986) y Bernanke (1986), sobre los VAR tradicionales es que permite hacer que todos los supuestos de identificación para recuperar las innovaciones estructurales a partir de los residuos estimados del vector autorregresivo sean consistentes con la teoría económica. Considérese el siguiente modelo en su forma estructural (Enders, 1995): BXt = Γ0 + Γ1Xt-1 + εt donde B es la matriz de coeficientes que expresan la relación contemporánea entre las variables endógenas, Xt es un vector de n variables endógenas, y εt son las innovaciones estructurales. Se asume que εt son independientes y siguen una distribución normal. Premultiplicando la expresión anterior por B-1 tenemos: Xt = B-1Γ0 + B-1Γ1Xt-1 + B-1εt Definiendo A0 = B-1Γ0, A1 = B-1Γ1 y εt = B-1εt, obtenemos el modelo estándar de estimación de los VAR: Xt = A0 + A1Xt-1 + et Para obtener las funciones impulso-respuesta debemos recuperar las innovaciones estructurales, εt, a partir de los residuos et del VAR en su forma tradicional. Con la metodología de los VAR estructurales, podemos establecer restricciones sobre la matriz B basadas en la teoría económica, de manera que se obtengan ortogonalizaciones no recursivas de los errores.
18
Para establecer los supuestos de identificación, en esta investigación se formularon restricciones de corto plazo relativas a la correlación contemporánea entre las variables, similares a las empleadas por Cabrera y Lagos (2000) para la economía chilena. Consideramos que estos supuestos son razonables para el caso venezolano. A continuación enumeramos los supuestos empleados, los cuales se detallan para cada modelo en el Anexo: • Se supone que la variable instrumento de política no responde
contemporáneamente a otras variables, excepto al comportamiento del tipo de cambio nominal, a las ventas de divisas, al nivel de reservas internacionales y a la incidencia fiscal en la base monetaria7.
• Las variables reales (actividad, tipo de cambio real) responden con
rezago al resto de las variables, es decir, no existe correlación contemporánea con el resto de las variables.
• Las variables financieras, como el índice bursátil, responden
contemporáneamente a todas las variables, excepto a las reales, ya que no se dispone de información sobre las mismas para la frecuencia mensual.
• El tipo de cambio nominal es predeterminado y por lo tanto no está
correlacionado contemporáneamente con ninguna otra variable8.
• Los precios sólo responden contemporáneamente al tipo de cambio
y no dependen de variables reales contemporáneas.
• El tipo de cambio real sólo reacciona contemporáneamente a cam-
bios en el tipo de cambio nominal, en los precios internacionales y en los precios de los bienes no transables.
7 La variable Incidencia fiscal sobre la base monetaria, es calculada en el Departamento de Análisis Económico del BCV. La metodología consiste en restar a todos los ingresos del gobierno, tanto internos como externos procedentes del público o del sistema bancario, los egresos por concepto de operaciones cambiarias del gobierno central, transferencias de recursos hacia entes distintos del público o del sistema bancario y la variación de las cuentas mantenidas en el BCV. 8 Siendo el BCV el principal oferente de divisas en el mercado y bajo los regímenes de crawling peg, control de cambios y bandas cambiarias existentes a lo largo del período, puede considerarse que el tipo de cambio nominal se comportó en forma predeterminada.
19
Los datos empleados son de frecuencia mensual y abarcan el período entre 1989 y 2000. Por una parte, esto puede constituir una limitación para nuestro estudio, dado que no pueden hacerse conclusiones generales para un período tan corto, particularmente para el ciclo económico. Pero por otra parte, antes de 1989 se disponían de menos instrumentos indirectos de política monetaria (ver Cuadro 1 del Anexo), existían controles sobre las tasas de interés y controles sobre la cantidad de créditos a ciertos sectores económicos, lo cual distorsionaría el análisis de los resultados sobre los mecanismos de transmisión. En este sentido, preferimos limitar el estudio a los últimos diez años e interpretar con cautela los resultados. Para cada mecanismo se incluye el conjunto de variables pertinentes y se presentan los resultados de las funciones de impulso-respuesta. Las variables empleadas se detallan en el Cuadro N° 2, así como el orden de integración de cada una. Cuadro N° 2 Variables utilizadas y el orden de integración Abreviación
Descripción
Orden de integración1/
CICLO
Logaritmo del PIB2/ real desestacionalizado menos la tendencia de largo plazo del PIB real estimada a través del filtro de Hodrick-Prescott LCIBBCV Logaritmo del Crédito interno bruto del Banco Central (Estadísticas Financieras del FMI, línea 12) LCIR Logaritmo del Crédito interno real (Estadísticas Financieras del FMI, línea 52) LIB Logaritmo del Índice de capitalización bursátil de la Bolsa de Valores de Caracas LINCIDENCIA Logaritmo de la Incidencia fiscal sobre la base monetaria4/ LIPCS Logaritmo del Índice de precios al consumidor de servicios (no transables) Base 1997=100 LIS Logaritmo del Índice de inflación subyacente o Núcleo inflacionario3/ LM1N Logaritmo de la M1 (efectivo más depósitos a la vista) en términos nominales LRINFMI Logaritmo de las Reservas internacionales operativas (Estadísticas Financieras del FMI, línea 1L) LTCN Logaritmo del Tipo de cambio nominal LTCR Logaritmo del Tipo de cambio real estimado como el cociente del IPC de bienes transables entre el IPC de no transables5/ LVENTA Logaritmo de las Ventas netas de divisas del Banco Central6/ DIAS
I(0) I(1) I(1) I(1) I(0) I(2) I(2) I(1) I(1) I(1) I(0) I(1)
Número de días laborales en el mes
A menos que se indique lo contrario, los datos son obtenidos de las estadísticas publicadas por el BCV. 1/ Utilizando el Test de Dickey-Fuller aumentado para raíces unitarias. 2/ El PIB mensual es obtenido a partir de la mensualización del PIB trimestral empleando las variaciones del Igaem (Indicador de producción mensual calculado por el DAC, BCV). 3/ Calculado por el DAC, BCV. 4/ Calculado por el Departamento de Análisis Económico, BCV. 5/ La “proxy” del IPC de transables es el IPC de bienes y la de no transables es el IPC de servicios. 6/ Vicepresidencia de Operaciones Internacionales, BCV.
20
En todos los modelos se incluyeron las variables tipo de cambio nominal, ventas netas de divisas, nivel de reservas internacionales netas e incidencia fiscal sobre la base monetaria, con el fin de controlar por la información que pueda incidir en el comportamiento de la política monetaria, para tratar de evitar problemas de especificación que puedan originar la paradoja de los precios9. Estas variables constituyen información que la autoridad monetaria posee al momento de ejecutar sus políticas, por lo cual consideramos relevante incluirlas para controlar por cualquier efecto de feedback entre estas variables y la variable de política. Igualmente, se incluyó como variable exógena en los modelos el número de días laborales para controlar por el tiempo efectivo de trabajo. Para los modelos monetario y de crédito se tomó como indicador de los precios el Índice del núcleo inflacionario, por considerarlo una buena “proxy” de los componentes de los precios que pueden estar mayormente afectados por la cantidad de dinero. El índice bursátil de la Bolsa de Valores de Caracas se tomó como “proxy” del valor de los activos financieros en el modelo monetario. Como vimos en la Sección 2, la instrumentación de la programación monetaria en Venezuela ha estado fundamentada en agregados monetarios. Por esta razón empleamos como variables de política agregados monetarios, tales como el crédito interno bruto del Banco Central, M1 y el dinero base. Estudios previos para el caso venezolano también han empleado agregados monetarios como instrumento de política. Por ejemplo, Guerra, Rodríguez y Sánchez (1996), utilizan M1 para estudiar los mecanismos de transmisión de la política monetaria en Venezuela, por encontrar que con este agregado se obtienen mejores resultados que con el dinero base. Por otra parte, López y Zambrano (2000), encuentran que el agregado monetario que tiene mayor impacto en la inflación, para el caso venezolano, es M1. En este estudio decidimos incorporar, además, el crédito bruto del Banco
9 Si el impulso de política monetaria contiene respuestas de la autoridad monetaria a variables no incluidas en el VAR, ello distorsiona los resultados de las funciones impulso-respuesta. Este problema se ha identificado como uno de los causantes de la paradoja de los precios (price puzzle). Algunos investigadores han encontrado que al incluir en el VAR variables que puedan ser buenas “proxy” de información que disponga la autoridad monetaria sobre la inflación futura (precios de commodities, por ejemplo), el problema de identificación puede ser eliminado (Bernanke (1995)). En el caso venezolano, incluimos variables cambiarias y fiscales.
21
Central, siendo éste el componente de la base monetaria sobre el cual el Banco Central tiene mayor control. Los resultados con dinero base son similares a aquellos obtenidos con M1, por lo cual sólo mostramos los resultados con dinero base en el Anexo. Las estimaciones de los VAR estructurales se realizaron con las variables tanto en niveles como en primeras diferencias. Dado que nuestro interés se centra en el análisis de las funciones impulso-respuesta y no en realizar predicciones a partir del modelo, el empleo de las variables en niveles para las estimaciones no representa mayor problema10. Por otra parte, al estimar con variables en niveles se conserva información de las variables que se pierde al tomar diferencias. Se emplearon los criterios de información de Schwarz y de HannanQuinn para establecer la estructura de rezagos11. La estimación de los vectores autorregresivos para cada modelo se realiza por mínimos cuadrados ordinarios y los resultados se presentan en el Anexo. La estimación de la matriz B para la ortogonalización de los residuos se realiza por el método de máxima verosimilitud, empleando las restricciones establecidas para cada modelo. Se probó la inclusión de variables dummies en las fechas durante las cuales estuvo vigente el control de cambio, pero no resultaron significativas ni mejoraron los resultados de la estimación, por lo que decidimos excluirlas de las estimaciones que presentamos. Las versiones de los modelos en niveles ajustaron mejor los datos y a partir de ellas se derivaron las funciones impulso-respuesta que mostramos a continuación.
10 Existe una discusión en la literatura sobre si deben incluirse variables en niveles o en diferencias. Las variables en diferencia son generalmente estacionarias, lo cual no necesariamente es el caso de las variables en niveles. Quienes advocan por incluir las variables diferenciadas consideran que al trabajar con variables estacionarias nos acercamos al proceso generador de datos y es posible interpretar los distintos tests de hipótesis. En tanto, los autores que prefieren incluir las variables en niveles señalan que al diferenciar se puede perder información valiosa para las funciones impulso-respuesta, que constituyen el centro de este tipo de análisis. Ver Cabrera y Lagos (1998). 11 Al realizar la prueba para un número de rezagos no mayor de 6, generalmente obteníamos que la estructura óptima de rezagos es de 1. Al realizar las pruebas incluyendo hasta 12 rezagos, el número óptimo de rezagos era mayor; sin embargo, los grados de libertad disminuían significativamente al incluir más de 6 rezagos en los modelos, arrojando resultados inestables. Por esta razón, decidimos optar por incluir sólo un rezago en los modelos.
22
Seguidamente estimamos una función de reacción para el Banco Central y luego contrastamos los distintos modelos para los mecanismos de transmisión de la política monetaria. 4.1Función de reacción del Banco Central En este apartado se pretende indagar a continuación si el Banco Central ajusta la política monetaria en función del desempeño de variables como la inflación y la brecha del producto con respecto a su tendencia. Por ejemplo, la regla de Taylor (Taylor, 1993), sugiere la aplicación de una política restrictiva cuando la inflación excede su objetivo o el producto está por encima de su tendencia. Para el caso venezolano queremos averiguar cómo reacciona la política monetaria, no sólo ante el ciclo y la inflación (si opera la regla de Taylor), sino también qué tanto es afectada por variables ligadas a la política cambiaria, tales como las ventas netas de divisas, las variaciones del tipo de cambio nominal y el nivel de reservas internacionales. Igualmente resulta interesante indagar si efectivamente las variables de origen fiscal tienen un impacto importante en el comportamiento de los agregados monetarios. Los resultados de las funciones impulso-respuesta, mostradas en la página siguiente12, sugieren que la política monetaria no reacciona ante desviaciones del producto respecto a su tendencia en el corto plazo, dado que la respuesta de las variables de política, M1 y crédito del Banco Central, a la variable ciclo no es significativa13. Sin embargo, no podemos hacer inferencias sobre el comportamiento de la política monetaria frente a los ciclos económicos a partir de este resultado, ya que sólo contamos con un período de diez años para los datos. Para obtener conclusiones más robustas en este sen-
12 Los resultados con dinero base como variable de política son muy similares a los resultados con M1. Por ello sólo incluimos los resultados con M1, y los resultados con dinero base los colocamos como Anexo. 13 El criterio de significación empleado en el informe es del 5%.
23
tido, deberíamos emplear datos trimestrales o anuales para períodos más largos. Lamentablemente, no se disponen de los datos necesarios para este tipo de análisis. En cuanto a los precios, se observa una respuesta positiva de las variables de política monetaria a los precios y significativa a partir del mes 7, cuando la variable de política es el crédito del Banco Central. Esto sugiere que la política monetaria ha sido pasiva en cuanto a los precios: se evidencian aumentos de los agregados monetarios con rezago probablemente para cubrir el incremento nominal de la demanda de saldos monetarios, generado éste por el incremento del nivel de precios. En cuanto a las variables relacionadas con la política cambiaria (tipo de cambio y ventas netas de divisas) los resultados parecen diferir según se tome a M1 o al crédito del Banco Central como variable de política. Para el caso de M1, el Banco Central parece responder con un recorte temporal y significativo de liquidez ante incrementos en las ventas netas de divisas, lo cual puede corresponderse con una política dirigida a mantener el tipo de cambio. Sin embargo, cuando consideramos como variable de política al crédito del Banco Central, los resultados de la función de reacción sugieren una respuesta pasiva de la institución a incrementar el crédito ante shocks positivos tanto en el tipo de cambio como en las ventas netas de divisas. Esta discrepancia en los resultados nos resulta un tanto paradójica y no tenemos una hipótesis clara de qué pueda explicarla. Con las reservas internacionales se evidencia una respuesta negativa de las variables de política con un rezago de al menos diez períodos, a partir del momento en que la respuesta se torna significativa a shocks positivos en el nivel de las RIN. Ello puede sugerir que la política monetaria trata de esterilizar aumentos no esperados en el nivel de reservas internacionales.
24
Funciones de reacción del Banco Central a innovaciones de 1 desviación estándar estructural (línea punteada: ± 2 desv. estándar del error) Meta intermedia: Log crédito bruto del Banco Central Respuesta de LCIBBCV a innovaciones en CICLO
Respuesta de LCIBBCV a innovaciones en LIS
.12
.12
.08
.08
.08
.04
.04
.04
.00
.00
.00
-.04
-.04
-.04
-.08
-.08
-.08
-.12
-.12 5
10
15
-.12
20
5
Respuesta de LCIBBCV a innovaciones en LINCIDENCIA
10
15
20
5
Respuesta de LCIBBCV a innovaciones en LVENTA .12
.12
.08
.08
.08
.04
.04
.04
.00
.00
.00
-.04
-.04
-.04
-.08
-.08
-.08
-.12
-.12 10
15
10
15
20
Respuesta de LCIBBCV a innovaciones en LRINFMI
.12
5
Respuesta de LCIBBCV a innovaciones en LTCN
.12
-.12
20
5
10
15
20
5
10
15
20
Funciones de reacción del Banco Central a innovaciones de 1 desviación estándar estructural (línea punteada: ± 2 desv. estándar del error) Meta intermedia: Log M1 nominal Respuesta de LM1N a innovaciones en CICLO
.06
Respuesta de LM1N a innovaciones en LIS
.06
.04
.04
.04
.02
.02
.02
.00
.00
.00
-.02
-.02
-.02
-.04
-.04
-.04
-.06
-.06
-.06
-.08
-.08 5
.06
10
15
20
Respuesta de LM1N a innovaciones en LINCIDENCIA
-.08 5
10
15
20
Respuesta de LM1N a innovaciones en LVENTA
.06
5
.04
.04
.02
.02
.02
.00
.00
.00
-.02
-.02
-.02
-.04
-.04
-.04
-.06
-.06
-.06
-.08
-.08 10
15
20
10
15
20
Respuesta de LM1N a innovaciones en LRINFMI
.06
.04
5
Respuesta de LM1N a innovaciones en LTCN
.06
-.08 5
10
15
25
20
5
10
15
20
Por su parte, el impacto positivo de las variables fiscales sobre los agregados monetarios parece ser de carácter transitorio. Cuando tomamos como medida de política el crédito del Banco Central, la respuesta no es significativa, mientras que con M1 la respuesta sólo resulta significativa por 4 períodos. Lo anterior evidencia un comportamiento pasivo de la política monetaria ante shocks fiscales. Nos resulta interesante que la respuesta expansiva de la política monetaria en el corto plazo ante incrementos del gasto público, no parece verse contrarrestada por recortes en períodos siguientes y que sólo se generen restricciones de liquidez ante shocks en las reservas internacionales. Esto quizás no sea sorprendente, dada la presencia de regímenes cambiarios predeterminados durante la mayor parte del período analizado. De estos resultados se desprende que las decisiones de política monetaria se ven afectadas por un conjunto de variables por las que debemos controlar para obtener los impulsos de política, lo cual se analiza en la próxima sección. 4.2 Mecanismos de transmisión 4.2.1 Mecanismo monetario Las variables incluidas en el VAR son: LCIBBCV o M1, LIB, CICLO, LIS, LTCN, LINCIDENCIA, LVENTA, LRINFMI. Los resultados para este mecanismo sugieren una respuesta positiva y significativa del ciclo durante dos períodos, cuando la variable de política es el crédito del Banco Central. Igualmente, los precios muestran un impacto positivo y significativo entre los períodos 2 al 22. La respuesta del índice bursátil a un shock en la variable de política no resulta significativa. Esto puede deberse a que el índice bursátil no resulta una “proxy” adecuada del valor de los activos financieros, dadas las imperfecciones y poca profundidad del mercado de capitales en Venezuela.
26
Mecanismo monetarista Funciones impulso-respuesta a innovaciones de 1 desviación estándar estructural (línea punteada: ± 2 desv. estándar del error) Meta intermedia: Log crédito bruto del Banco Central .006
Respuesta de CICLO a innovaciones en LCIBBCV
Respuesta de LIS a innovaciones en LCIBBCV
.10 .08
.004
Respuesta de LIB a innovaciones en LCIBBCV
.16
.12
.06 .002
.08 .04
.000
.04 .02
-.002
.00
.00
-.004
-.04
-.02 5
10
15
20
5
10
15
20
5
10
15
20
Mecanismo monetarista Funciones impulso-respuesta a innovaciones de 1 desviación estándar estructural (línea punteada: ± 2 desv. estándar del error) Meta intermedia: Log M1 Nominal Respuesta de CICLO a innovaciones en LM 1N
Respuesta deLIS a innovaciones en LM 1N
.006
.10
.004
.08
.002
.06
.000
.04
-.002
.02
-.004
.00
Respuesta de LIB a innovaciones en LM 1N .12
.08
.04
.00
-.006
-.04
-.08
-.02 5
10
15
20
5
10
15
20
5
10
15
20
Como alternativa, podría considerarse el precio de un activo de capital como los bienes inmobiliarios. Desafortunadamente, para esta variable sólo se disponen de datos de frecuencia mensual a partir de 1997. Con M1, los resultados son bastante similares, sólo que la respuesta de los precios no resulta significativa. 4.2.2 Mecanismo del crédito Las variables empleadas en el VAR son: LCIBBCV o M1, LCIR, CICLO, LIS, LINCIDENCIA, LTCN, LRINFM1, LVENTA. Para este mecanismo tenemos resultados similares tanto al emplear M1 como el crédito del banco central. Se evidencia en ambos casos una expansión significativa y transitoria del crédito real del sistema financiero en respuesta a un impulso de la variable de política14.
14 Resultados similares se obtuvieron al emplear el crédito nominal del sistema financiero en el modelo en lugar del crédito real.
27
La variable ciclo también evidencia un incremento transitorio ante shocks de M1 o del crédito del Banco Central (significativo entre el mes 2 y el mes 4). Los precios muestran una respuesta positiva y significativa entre los meses 2 y 21, cuando la variable de política es el crédito del Banco Central, pero no es significativa para M1. Mecanismo de crédito Funciones impulso-respuesta a innovaciones de 1 desviación estándar estructural (línea punteada: ± 2 desv. estándar del error) Meta intermedia: Log crédito bruto del Banco Central Respuesta de CICLO a innovaciones en LCIBBCV
Respuesta de LIS a innovaciones en LCIBBCV
Respuesta de LIS a innovaciones en LCIR
.006
. 08
.08
.004
. 06
.06
.002
. 04
.04
.000
. 02
.02
Respuesta de LCIR a innovaciones en LCIBBCV .06
.04
.02 .00 -.002
. 00
.00
-.004
-.02
-.02
-.006
-.04 5
10
15
20
-.02
-.04 5
10
15
-.04
20
5
10
15
20
5
10
15
20
Mecanismo de crédito Funciones impulso-respuesta a innovaciones de 1 desviación estándar estructural (línea punteada: ± 2 desv. estándar del error) Meta intermedia: Log M1 Nominal .006
Repuesta de CICLO a innovaciones en LMIN a innovaciones en LM1N
Respuesta de LIS a innovaciones a innovacionesenenLMIN LM1N
.05
Respuesta de LCIR aa innovaciones enLM1N LMIN innovaciones en
.03
.04
.02
.004 .03
.01
.02
.002
.01 .000
.00
.00 -.01
-.01
-.002
-.02 5
10
15
20
-.02 5
10
15
20
5
10
15
20
El modelo sugiere que las variables crédito real del sistema financiero y ciclo se ven afectadas transitoriamente por el shock de política, pero que luego el efecto se traslada en forma más permanente hacia precios. Se observa, además una relación directa entre crédito y precios: ante un shock al crédito real del sistema financiero (LCIR) los precios muestran una respuesta positiva y significativa durante los primeros nueve meses.
28
4.2.3 Mecanismo cambiario Las variables del VAR son: LCIBBCV o M1, LCIBBCV, CICLO, LIPCS, LTCR, LVENTA, LRINFMI, LINCIDENCIA, LTCN. Bajo el mecanismo cambiario, la respuesta del ciclo a los shocks de política no resultó significativa. Los precios de los bienes no transables muestran una respuesta positiva pero sólo resulta significativa cuando se emplea el crédito del Banco Central como variable de política. El tipo de cambio real experimenta un incremento (apreciación) que resulta significativo hasta el mes 12, independientemente de la variable de política. De estos tres modelos, el que mejor parece ajustarse a los datos es el del mecanismo de crédito. Ello, sin embargo, no descarta que pueda estar operando el canal monetario en la economía y que nuestro resultado para ese modelo se deba a que el índice bursátil no constituye una buena “proxy” para el valor de los activos financieros. Mecanismo cambiario Funciones impulso-respuesta a innovaciones de 1 desviación estándar estructural (línea punteada: ± 2 desv.Respuesta estándar del error) Respuesta de LIPCS de LTCR a innovaciones en LCIBBCV a innovaciones endel LCIBBCV Meta intermedia: Log crédito bruto Banco Central .05 .03
Respuesta de CICLO a innovaciones en LCIBBCV .008
.04
.006
.02 .03
.004
.01
.02 .002 .01 .000
.00
.00 -.01
-.002
-.01
-.004
-.02 5
10
15
20
-.02 5
10
15
20
5
10
15
20
Mecanismo cambiario Funciones impulso-respuesta a innovaciones de 1 desviación estándar estructural (línea punteada: ± 2 desv. estándar del error) Meta intermedia: Log M1 Nominal Respuesta de CICLO a innovaciones en LM1N
Respuesta de LIPCS a innovaciones en LM1N
.005
.06
.004
.05
.003
.04
.002
.03
.001
.02
.000
.01
-.001
.00
-.002
Respuesta de LTCR a innovaciones en LM1N .020 .015 .010 .005 .000 -.005
-.01
-.003
-.02 5
10
15
20
-.010 5
10
29
15
20
5
10
15
20
Cabe resaltar que en todos los casos se logró eliminar el problema del price puzzle; como vimos anteriormente, el Banco Central parece incluir información de variables fiscales y cambiarias en su función de reacción. Pensamos que el controlar por esas variables en los modelos anteriores contribuyó a la eliminación de los problemas de especificación que generan el problema del price puzzle. Por último, vale la pena mencionar que se ensayaron también modelos con corrección de errores para los distintos mecanismos de transmisión, aunque nos concentramos fundamentalmente en el examen del mecanismo de crédito. En primer lugar, no encontramos relaciones a largo plazo estables y coherentes teóricamente para la totalidad de las variables del modelo. Adicionalmente, encontramos que restringiendo la relación de largo plazo únicamente al agregado monetario y a la inflación subyacente, siguiendo a Guerra, Rodríguez y Sánchez (1998), hallamos efectivamente una relación de cointegración. Para derivar las funciones impulso-respuesta del modelo de vector con corrección de errores, VEC, empleamos la descomposición de Choleski y encontramos que cualquier alteración en el orden de las variables altera en gran medida los resultados. Por otra parte, notamos que la bondad del ajuste del modelo VEC no supera a la del modelo con vectores autorregresivos estructurales, por lo que pensamos que los resultados con los VAR estructurales son más adecuados en este caso.
30
5. Conclusiones En este trabajo analizamos la función de reacción del Banco Central y los mecanismos de transmisión de la política monetaria en Venezuela empleando la técnica de vectores autorregresivos estructurales. Los resultados de la estimación de la función de reacción del Banco Central no parecen sorprendentes, ya que sugieren que la política monetaria exhibe por una parte, cambios permanentes y en la misma dirección frente a shocks en los precios y por otra, respuestas transitorias ante shocks de origen fiscal. Las fluctuaciones del producto en el muy corto plazo parecen no producir cambios en la dirección de la política monetaria. En respuesta a shocks positivos en las reservas internacionales, la autoridad monetaria parece responder con recortes de liquidez o crédito con rezago. Ello puede responder a una estrategia de esterilización de recursos, para evitar que movimientos en las reservas afecten los saldos monetarios. Recordemos que la política monetaria ha estado limitada durante la mayor parte del período analizado por regímenes cambiarios con cierto grado de predeterminación, lo cual no deja muchos grados de libertad para la conducción de una política contracíclica tendiente a suavizar las fluctuaciones del producto o a recortar la liquidez ante presiones inflacionarias. Al controlar por variables fiscales y cambiarias que intervienen en la función de reacción del Banco Central, logramos eliminar el problema de la paradoja de los precios en los modelos de mecanismos de transmisión. El modelo del mecanismo de crédito es el que parece ajustar mejor los datos, lo cual sugiere que este mecanismo puede estar operando en nuestra economía. Ello no significa, sin embargo, que los otros mecanismos no estén operando. En el caso del mecanismo monetario tradicional, el que el modelo planteado no ajuste bien los datos puede deberse a que el índice bursátil representa una “proxy” inadecuada del valor de los activos financieros.
31
Checcetti (1995), entre otros autores, señala algunas limitaciones del uso de los datos agregados para contrastar la existencia del mecanismo de crédito. Particularmente, se hace difícil distinguir entre los efectos del mecanismo monetario y de crédito con datos agregados, pues la cercana relación entre activos y pasivos de la banca, representa una traba para identificar si los efectos sobre el producto provienen del lado de la demanda, tal como sugiere el mecanismo monetario o de la oferta, como predice el mecanismo de crédito. En este sentido, los resultados de este trabajo no deben tomarse como concluyentes. Estudios posteriores sobre el tema deberían emplear datos de corte transversal de las empresas para verificar si la política monetaria tiene efectos distributivos, lo cual podría arrojar evidencia más sólida a favor de la presencia del mecanismo de crédito. Dichos estudios están sujetos, por supuesto, a la disponibilidad de datos en Venezuela.
32
ANEXO
33
34
35
36
37
38
39
Cuadro N° 2 Supuestos de identificación para la función de reacción del Banco Central Variable
Dependencia contemporánea
LCIBBCV CICLO LIS LTCN LINCIDENCIA LVENTA LRINFMI
LINCIDENCIA, LTCN, LVENTA, LRINFMI Exógena LTCN Exógena Exógena Exógena LVENTA
Supuestos de identificación para el mecanismo monetario Variable
Dependencia contemporánea
LINCIDENCIA LTCN LCIBBCV LIB CICLO LIS LVENTA LRINFMI
Exógena Exógena LINCIDENCIA, LTCN, LVENTA, LRINFMI LINCIDENCIA, LTCN, LIS, LRINFMI Exógena LTCN Exógena LVENTA
Supuestos de identificación para el mecanismo crediticio Variable
Dependencia contemporánea
LINCIDENCIA LTCN LCIBBCV LCIR CICLO LIS LRINFMI LVENTA
Exógena Exógena LINCIDENCIA, LTCN, LVENTA, LRINFMI LTCN, LCIBBCV Exógena LTCN LVENTA Exógena
Supuestos de identificación para el mecanismo cambiario Variable
Dependencia contemporánea
LINCIDENCIA LTCN LCIBBCV CICLO LIPCS LTCR LVENTA LRINFMI
Exógena Exógena LINCIDENCIA, LTCN, LVENTA, LRINFMI Exógena LTCN LTCN, LIPCS Exógena LVENTA
40
Cuadro N° 3 Estimadores del vector autorregresivo para el mecanismo monetario Instrumento de política monetaria: Log crédito bruto del Banco Central Muestra: 1991:02 2000:12 Observaciones incluidas: 111 Errores estándar en ( ) y estadísticos t en [ ] LINCIDENCIA
LTCN
LCIBBCV
LIB
CICLO
LIS
LVENTA
LRINFMI
LINCIDENCIA(-1)
0.136859 (0.09152) [ 1.49537]
0.004161 0.007807 0.004497 0.004347 -3.59E-05 (0.01214) (0.01327) (0.03431) (0.00644) (0.00242) [ 0.34274] [ 0.58815] [ 0.13105] [ 0.67550] [-0.01483]
0.172519 0.012370 (0.13926) (0.01324) [ 1.23880] [ 0.93398]
LTCN(-1)
-0.757237 (0.62009) [-1.22117]
0.772122 -0.092168 0.047874 -0.107354 0.012955 (0.08226) (0.08994) (0.23249) (0.04360) (0.01642) [ 9.38622] [-1.02478] [ 0.20592] [-2.46217] [ 0.78907]
-0.739766 0.233628 (0.94355) (0.08973) [-0.78402] [ 2.60363]
LCIBBCV(-1)
0.360037 (0.48400) [ 0.74387]
0.107688 0.894287 0.085424 0.070989 0.034986 (0.06421) (0.07020) (0.18147) (0.03403) (0.01282) [ 1.67717] [ 12.7389] [ 0.47073] [ 2.08593] [ 2.73008]
0.309541 -0.263482 (0.73648) (0.07004) [ 0.42030] [-3.76193]
LIB(-1)
0.340381 (0.16749) [ 2.03221]
0.046732 0.112245 0.921822 0.011401 0.003451 (0.02222) (0.02429) (0.06280) (0.01178) (0.00443) [ 2.10317] [ 4.62035] [ 14.6789] [ 0.96804] [ 0.77824]
-0.470705 0.105450 (0.25486) (0.02424) [-1.84689] [ 4.35068]
CICLO(-1)
-0.425161 (1.32092) [-0.32187]
0.179522 -0.063882 -0.302623 0.164650 0.090968 (0.17523) (0.19159) (0.49526) (0.09288) (0.03497) [ 1.02447] [-0.33343] [-0.61104] [ 1.77272] [ 2.60099]
0.816900 -0.171993 (2.00996) (0.19115) [ 0.40643] [-0.89979]
LIS(-1)
0.825578 (0.29011) [ 2.84577]
0.072761 0.101812 -0.051686 0.009214 0.962921 (0.03849) (0.04208) (0.10877) (0.02040) (0.00768) [ 1.89059] [ 2.41962] [-0.47518] [ 0.45170] [ 125.361]
0.393967 -0.032053 (0.44144) (0.04198) [ 0.89247] [-0.76351]
LVENTA(-1)
-0.190364 (0.06201) [-3.06974]
0.004581 0.005690 -0.001789 0.008195 -0.000951 (0.00823) (0.00899) (0.02325) (0.00436) (0.00164) [ 0.55685] [ 0.63256] [-0.07694] [ 1.87947] [-0.57909]
0.160257 -0.016469 (0.09436) (0.00897) [ 1.69834] [-1.83521]
LRINFMI(-1)
0.343517 (0.23350) [ 1.47119]
-0.197928 -0.238401 -0.071541 0.010075 -0.064053 (0.03098) (0.03387) (0.08755) (0.01642) (0.00618) [-6.38979] [-7.03937] [-0.81718] [ 0.61367] [-10.3607]
1.424338 0.933302 (0.35530) (0.03379) [ 4.00888] [ 27.6217]
C
1.345910 (2.05616) [ 0.65457]
1.245155 2.005848 0.649770 -0.455444 0.467908 (0.27277) (0.29823) (0.77092) (0.14458) (0.05444) [ 4.56485] [ 6.72583] [ 0.84285] [-3.15017] [ 8.59475]
-7.304393 0.932343 (3.12872) (0.29754) [-2.33463] [ 3.13349]
DIAS
0.016570 (0.02370) [ 0.69927]
0.000654 -0.003479 -0.002330 0.004572 0.000213 (0.00314) (0.00344) (0.00888) (0.00167) (0.00063) [ 0.20805] [-1.01212] [-0.26224] [ 2.74398] [ 0.34005]
0.010718 -0.001703 (0.03606) (0.00343) [ 0.29726] [-0.49661]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent
0.909096 0.900995 12.79793 0.355967 112.2287 -37.60850 0.857811 1.101913 12.13907 1.131309
0.997629 0.997418 0.225227 0.047223 4721.962 186.6076 -3.182118 -2.938016 5.423958 0.929290
0.332764 0.273307 29.63198 0.541651 5.596738 -84.20465 1.697381 1.941483 6.593317 0.635395
Determinant Residual Covariance Log Likelihood (d.f. adjusted) Akaike Information Criteria Schwarz Criteria
0.997485 0.997261 0.269234 0.051630 4450.317 176.7024 -3.003646 -2.759545 8.384651 0.986442
1.58E-19 1142.695 -19.14766 -17.19485
41
0.977722 0.975737 1.799078 0.133464 492.5110 71.28302 -1.104199 -0.860097 7.832952 0.856820
0.379379 0.324076 0.063275 0.025030 6.860021 257.0719 -4.451746 -4.207644 0.001678 0.030444
0.999940 0.999935 0.008972 0.009425 187348.5 365.4851 -6.405138 -6.161036 6.453516 1.166925
0.961700 0.958287 0.267993 0.051511 281.7863 176.9589 -3.008269 -2.764167 9.191311 0.252212
Cuadro N° 4 Estimadores del vector autorregresivo para el mecanismo crediticio Instrumento de política monetaria: Log crédito bruto del Banco Central Muestra: 1991:02 2000:12 Observaciones incluidas: 111 Errores estándar en ( ) y estadísticos t en [ ] LINCIDENCIA
LTCN
LCIBBCV
LCIR
CICLO
LIS
LRINFMI
LVENTA
LINCIDENCIA(-1)
0.150013 (0.09105) [ 1.64764]
0.007846 0.014432 0.005867 0.005019 0.000386 (0.01216) (0.01453) (0.01366) (0.00643) (0.00236) [ 0.64547] [ 0.99351] [ 0.42963] [ 0.78049] [ 0.16349]
0.017524 0.150246 (0.01403) (0.14001) [ 1.24875] [ 1.07313]
LTCN(-1)
-1.075068 (0.64883) [-1.65693]
0.827776 -0.076121 -0.292001 -0.105781 0.024971 (0.08663) (0.10352) (0.09732) (0.04583) (0.01682) [ 9.55580] [-0.73532] [-3.00051] [-2.30835] [ 1.48484]
0.192185 -0.516039 (0.10000) (0.99772) [ 1.92180] [-0.51722]
LCIBBCV(-1)
1.185555 (0.49029) [ 2.41809]
0.113183 1.035247 0.140869 0.085368 0.026806 (0.06546) (0.07822) (0.07354) (0.03463) (0.01271) [ 1.72908] [ 13.2343] [ 1.91562] [ 2.46533] [ 2.10939]
-0.069670 -0.597667 (0.07557) (0.75393) [-0.92197] [-0.79274]
LCIR(-1)
-0.971273 (0.47981) [-2.02430]
0.111927 -0.021742 (0.06406) (0.07655) [ 1.74724] [-0.28402]
0.800192 -0.002348 0.027794 (0.07197) (0.03389) (0.01244) [ 11.1191] [-0.06930] [ 2.23497]
-0.160042 0.810080 (0.07395) (0.73781) [-2.16414] [ 1.09795]
CICLO(-1)
0.212110 (1.31499) [ 0.16130]
0.199893 0.064566 0.127755 0.177735 0.087128 (0.17556) (0.20980) (0.19723) (0.09287) (0.03408) [ 1.13857] [ 0.30775] [ 0.64774] [ 1.91372] [ 2.55633]
-0.013114 0.081513 (0.20268) (2.02210) [-0.06471] [ 0.04031]
LIS(-1)
0.395686 (0.29092) [ 1.36014]
0.068455 0.026649 0.070708 0.001548 0.966960 (0.03884) (0.04642) (0.04363) (0.02055) (0.00754) [ 1.76247] [ 0.57414] [ 1.62049] [ 0.07536] [ 128.239]
-0.133811 0.869539 (0.04484) (0.44735) [-2.98429] [ 1.94376]
LRINFMI(-1)
0.145186 (0.30109) [ 0.48220]
-0.106238 -0.159056 -0.101914 0.018067 -0.047813 (0.04020) (0.04804) (0.04516) (0.02127) (0.00780) [-2.64280] [-3.31098] [-2.25671] [ 0.84957] [-6.12673]
0.940153 (0.04641) [ 20.2589]
LVENTA(-1)
-0.192396 (0.06200) [-3.10315]
0.003855 0.004475 0.006264 0.008072 -0.001040 (0.00828) (0.00989) (0.00930) (0.00438) (0.00161) [ 0.46572] [ 0.45242] [ 0.67362] [ 1.84341] [-0.64717]
-0.017355 0.164040 (0.00956) (0.09534) [-1.81614] [ 1.72058]
C
7.474964 (4.51933) [ 1.65400]
-0.053599 1.421912 1.693293 -0.513533 0.201590 (0.60338) (0.72105) (0.67785) (0.31919) (0.11714) [-0.08883] [ 1.97200] [ 2.49804] [-1.60887] [ 1.72097]
1.602018 -11.12864 (0.69656) (6.94951) [ 2.29991] [-1.60136]
DIAS
0.015277 (0.02365) [ 0.64594]
-0.000291 -0.004838 -0.003188 0.004434 8.25E-05 (0.00316) (0.00377) (0.00355) (0.00167) (0.00061) [-0.09201] [-1.28223] [-0.89882] [ 2.65455] [ 0.13460]
-0.002544 0.014172 (0.00365) (0.03637) [-0.69783] [ 0.38969]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent
0.909068 0.900965 12.80184 0.356021 112.1910 -37.62543 0.858116 1.102218 12.13907 1.131309
0.997598 0.997384 0.228194 0.047533 4660.431 185.8813 -3.169033 -2.924931 5.423958 0.929290
0.956538 0.952665 0.304115 0.054873 246.9831 169.9412 -2.881823 -2.637721 9.191311 0.252212
Determinant Residual Covariance Log Likelihood (d.f. adjusted) Akaike Information Criteria Schwarz Criteria
0.996955 0.996684 0.325880 0.056803 3674.795 166.1048 -2.812699 -2.568597 8.384651 0.986442
1.65E-20 1268.049 -21.40629 -19.45347
42
0.971870 0.969364 0.287998 0.053399 387.7242 172.9632 -2.936274 -2.692172 4.308007 0.305082
0.373650 0.317837 0.063859 0.025145 6.694642 256.5619 -4.442558 -4.198456 0.001678 0.030444
0.999943 0.999937 0.008600 0.009228 195442.5 367.8324 -6.447431 -6.203330 6.453516 1.166925
1.440151 (0.46300) [ 3.11048]
0.318365 0.257625 30.27141 0.547464 5.241465 -85.38955 1.718731 1.962832 6.593317 0.635395
Cuadro N° 5 Estimadores del vector autorregresivo para el mecanismo cambiario Instrumento de política monetaria: Log crédito bruto del Banco Central Muestra: 1991:01 2000:12 Observaciones incluidas: 112 Errores estándar en ( ) y estadísticos t en [ ] LINCIDENCIA
LTCN
LCIBBCV
CICLO
LIPCS
LTCR
LVENTA LRINFMI
LINCIDENCIA(-1)
0.168422 (0.09123) [ 1.84614]
0.007229 0.014706 0.003614 0.000462 0.000157 (0.01100) (0.01402) (0.00631) (0.00229) (0.00280) [ 0.65740] [ 1.04910] [ 0.57224] [ 0.20154] [ 0.05599]
0.140749 0.016504 (0.13755) (0.01411) [ 1.02326] [ 1.17004]
LTCN(-1)
-0.718713 (0.63780) [-1.12687]
0.816683 -0.052989 -0.109156 0.023694 0.011430 (0.07687) (0.09800) (0.04415) (0.01604) (0.01959) [ 10.6235] [-0.54072] [-2.47248] [ 1.47755] [ 0.58331]
-0.973264 0.264470 (0.96163) (0.09862) [-1.01210] [ 2.68181]
LCIBBCV(-1)
0.740337 (0.53625) [ 1.38057]
0.325474 1.108030 0.063141 0.022357 0.078258 (0.06464) (0.08239) (0.03712) (0.01348) (0.01647) [ 5.03553] [ 13.4478] [ 1.70102] [ 1.65816] [ 4.75014]
-0.556105 -0.150293 (0.80853) (0.08292) [-0.68780] [-1.81260]
CICLO(-1)
-0.086853 (1.33222) [-0.06519]
0.235009 0.059574 0.175476 0.097239 0.016728 (0.16057) (0.20469) (0.09222) (0.03350) (0.04093) [ 1.46355] [ 0.29104] [ 1.90287] [ 2.90302] [ 0.40871]
0.238804 -0.051095 (2.00864) (0.20599) [ 0.11889] [-0.24805]
LIPCS(-1)
0.642276 (0.47163) [ 1.36183]
-0.171601 -0.074713 0.031368 0.969498 -0.095321 (0.05685) (0.07246) (0.03265) (0.01186) (0.01449) [-3.01870] [-1.03102] [ 0.96084] [ 81.7585] [-6.57869]
1.148787 -0.088808 (0.71109) (0.07292) [ 1.61553] [-1.21783]
LTCR(-1)
0.370154 (0.99117) [ 0.37345]
-0.530710 -0.260602 0.073387 0.005119 0.766013 (0.11947) (0.15229) (0.06861) (0.02492) (0.03045) [-4.44231] [-1.71120] [ 1.06964] [ 0.20540] [ 25.1558]
1.446575 -0.018860 (1.49442) (0.15325) [ 0.96798] [-0.12306]
LVENTA(-1)
-0.195932 (0.06319) [-3.10065]
0.001881 0.003222 0.008518 -0.000602 0.000307 (0.00762) (0.00971) (0.00437) (0.00159) (0.00194) [ 0.24691] [ 0.33188] [ 1.94737] [-0.37912] [ 0.15818]
0.168114 -0.016948 (0.09527) (0.00977) [ 1.76452] [-1.73463]
LRINFMI(-1)
0.617148 (0.23405) [ 2.63683]
-0.233474 -0.185276 0.029230 -0.050898 -0.049891 (0.02821) (0.03596) (0.01620) (0.00588) (0.00719) [-8.27620] [-5.15208] [ 1.80420] [-8.64922] [-6.93850]
1.187417 1.023447 (0.35289) (0.03619) [ 3.36488] [ 28.2809]
C
-0.956059 (4.75025) [-0.20126]
3.429912 2.497264 -0.850513 0.266587 1.155818 (0.57256) (0.72987) (0.32881) (0.11944) (0.14594) [ 5.99053] [ 3.42151] [-2.58661] [ 2.23206] [ 7.91994]
-8.504528 0.010786 (7.16214) (0.73448) [-1.18743] [ 0.01468]
DIAS
0.013358 (0.02393) [ 0.55817]
0.000108 -0.004889 0.004239 0.000228 0.000702 (0.00288) (0.00368) (0.00166) (0.00060) (0.00074) [ 0.03740] [-1.32958] [ 2.55876] [ 0.37949] [ 0.95502]
0.015887 -0.003288 (0.03608) (0.00370) [ 0.44030] [-0.88855]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent
0.906002 0.897708 13.37359 0.362096 109.2362 -39.90894 0.891231 1.133954 12.12812 1.132146
0.998001 0.997824 0.194290 0.043644 5657.532 197.0655 -3.340455 -3.097732 5.410690 0.935691
0.315450 0.255048 30.40186 0.545946 5.222548 -85.89740 1.712453 1.955177 6.592978 0.632537
Determinant Residual Covariance Log Likelihood (d.f. adjusted) Akaike Information Criteria Schwarz Criteria
0.997112 0.996857 0.315724 0.055636 3913.152 169.8766 -2.854939 -2.612216 8.371077 0.992441
1.09E-21 1431.811 -24.13948 -22.19769
43
0.372190 0.316795 0.064079 0.025064 6.718840 259.1827 -4.449691 -4.206968 0.001582 0.030324
0.999953 0.999949 0.008454 0.009104 241662.4 372.6072 -6.475128 -6.232405 3.707332 1.274423
0.996694 0.996403 0.012623 0.011124 3417.217 350.1616 -6.074315 -5.831592 4.634578 0.185477
0.954616 0.950611 0.319727 0.055987 238.3861 169.1710 -2.842339 -2.599615 9.189353 0.251927
Cuadro N° 6 Estimadores del vector autorregresivo para la función de reacción del Banco Central Instrumento de política monetaria: Log crédito bruto del Banco Central Muestra: 1991:02 2000:12 Observaciones incluidas: 111 Errores estándar en ( ) y estadísticos t en [ ] LCIBBCV
CICLO
LIS
LTCN
LINCIDENCIA
LVENTA
LRINFMI
LCIBBCV(-1)
1.021379 (0.07046) [ 14.4961]
0.088222 (0.03198) [ 2.75858]
0.039175 (0.01163) [ 3.36896]
0.162447 (0.05932) [ 2.73826]
0.769250 (0.44714) [ 1.72037]
-0.226823 (0.67789) [-0.33460]
-0.142710 (0.06925) [-2.06082]
CICLO(-1)
0.063874 (0.20849) [ 0.30636]
0.172349 (0.09463) [ 1.82123]
0.094553 (0.03441) [ 2.74794]
0.230459 (0.17555) [ 1.31282]
-0.066803 (1.32311) [-0.05049]
0.285298 (2.00592) [ 0.14223]
-0.053649 (0.20491) [-0.26182]
LIS(-1)
0.028778 (0.04306) [ 0.66829]
0.004527 (0.01955) [ 0.23162]
0.960853 (0.00711) [ 135.201]
0.043520 (0.03626) [ 1.20029]
0.619141 (0.27328) [ 2.26560]
0.698093 (0.41431) [ 1.68497]
-0.099797 (0.04232) [-2.35800]
LTCN(-1)
-0.060427 (0.09852) [-0.61332]
-0.111048 (0.04472) [-2.48319]
0.013481 (0.01626) [ 0.82910]
0.782383 (0.08296) [ 9.43139]
-0.699075 (0.62525) [-1.11808]
-0.867436 (0.94791) [-0.91510]
0.261248 (0.09683) [ 2.69794]
LINCIDENCIA(-1)
0.015343 (0.01449) [ 1.05905]
0.004365 (0.00658) [ 0.66381]
0.000147 (0.00239) [ 0.06155]
0.006980 (0.01220) [ 0.57219]
0.155597 (0.09194) [ 1.69235]
0.141505 (0.13939) [ 1.01519]
0.019212 (0.01424) [ 1.34924]
LVENTA(-1)
0.004767 (0.00988) [ 0.48258]
0.007769 (0.00448) [ 1.73302]
-0.001001 (0.00163) [-0.61395]
0.004055 (0.00832) [ 0.48759]
-0.194991 (0.06268) [-3.11081]
0.164389 (0.09503) [ 1.72988]
-0.017441 (0.00971) [-1.79668]
LRINFMI(-1)
-0.150868 (0.03041) [-4.96075]
0.021329 (0.01380) [ 1.54511]
-0.061208 (0.00502) [-12.1950]
-0.160476 (0.02561) [-6.26701]
0.621969 (0.19300) [ 3.22263]
1.055406 (0.29260) [ 3.60700]
1.016287 (0.02989) [ 34.0009]
C
1.156097 (0.26487) [ 4.36482]
-0.465368 (0.12022) [-3.87090]
0.446747 (0.04371) [ 10.2201]
0.923977 (0.22301) [ 4.14317]
-0.810359 (1.68088) [-0.48210]
-3.800940 (2.54831) [-1.49155]
0.158309 (0.26032) [ 0.60814]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent
0.996902 0.996691 0.331617 0.056741 4734.680 165.1362 -2.831283 -2.636001 8.384651 0.986442
0.329889 0.284348 0.068320 0.025755 7.243710 252.8138 -4.411060 -4.215778 0.001678 0.030444
0.999940 0.999936 0.009032 0.009364 244005.5 365.1132 -6.434472 -6.239190 6.453516 1.166925
0.997525 0.997357 0.235092 0.047775 5930.901 184.2284 -3.175287 -2.980006 5.423958 0.929290
0.905137 0.898689 13.35532 0.360088 140.3958 -39.97453 0.864406 1.059687 12.13907 1.131309
0.308800 0.261825 30.69621 0.545913 6.573736 -86.16298 1.696630 1.891912 6.593317 0.635395
0.954221 0.951110 0.320326 0.055767 306.7048 167.0589 -2.865926 -2.670645 9.191311 0.252212
Determinant Residual Covariance Log Likelihood (d.f. adjusted) Akaike Information Criteria Schwarz Criteria
1.27E-17 1056.808 -18.03257 -16.66560
44
Cuadro N° 7 Estimadores del vector autorregresivo para el mecanismo monetario Instrumento de política monetaria: Log M1 nominal Muestra: 1991:02 2000:12 Observaciones incluidas: 111 Errores estándar en ( ) y estadísticos t en [ ] LINCIDENCIA
LTCN
LM1N
LIB
CICLO
LIS
LVENTA
LRINFMI
LINCIDENCIA(-1)
0.150619 (0.09196) [ 1.63787]
0.008276 -0.015497 0.009497 0.004407 0.000712 (0.01228) (0.01491) (0.03439) (0.00651) (0.00252) [ 0.67402] [-1.03931] [ 0.27620] [ 0.67700] [ 0.28247]
0.145769 0.010401 (0.13774) (0.01394) [ 1.05829] [ 0.74608]
LTCN(-1)
-0.514254 (0.46451) [-1.10708]
0.844819 -0.061226 0.077163 -0.016088 0.046202 (0.06202) (0.07532) (0.17369) (0.03288) (0.01272) [ 13.6217] [-0.81289] [ 0.44426] [-0.48929] [ 3.63093]
0.099593 -0.076573 (0.69575) (0.07042) [ 0.14314] [-1.08742]
LM1N(-1)
-0.150830 (0.31334) [-0.48136]
-0.045082 0.887061 -0.078735 0.035915 -6.60E-05 (0.04184) (0.05081) (0.11716) (0.02218) (0.00858) [-1.07759] [ 17.4597] [-0.67202] [ 1.61923] [-0.00769]
0.825027 -0.090086 (0.46932) (0.04750) [ 1.75791] [-1.89654]
LIB(-1)
0.409581 (0.15823) [ 2.58847]
0.067426 0.035194 0.943573 0.016894 0.008364 (0.02113) (0.02566) (0.05917) (0.01120) (0.00433) [ 3.19150] [ 1.37173] [ 15.9480] [ 1.50832] [ 1.92969]
-0.529735 0.079696 (0.23700) (0.02399) [-2.23514] [ 3.32245]
CICLO(-1)
-0.053597 (1.29472) [-0.04140]
0.290635 -0.054864 -0.183481 0.190551 0.116548 (0.17287) (0.20993) (0.48412) (0.09165) (0.03547) [ 1.68127] [-0.26134] [-0.37900] [ 2.07914] [ 3.28614]
0.447640 -0.299298 (1.93925) (0.19627) [ 0.23083] [-1.52492]
LIS(-1)
1.020605 (0.51287) [ 1.99000]
0.131051 0.149831 0.052535 -0.040915 0.962187 (0.06848) (0.08316) (0.19177) (0.03630) (0.01405) [ 1.91382] [ 1.80176] [ 0.27395] [-1.12701] [ 68.4876]
-0.726478 0.095698 (0.76818) (0.07775) [-0.94572] [ 1.23089]
LVENTA(-1)
-0.192389 (0.06211) [-3.09733]
0.003975 -0.021636 -0.002506 0.008157 -0.001067 (0.00829) (0.01007) (0.02323) (0.00440) (0.00170) [ 0.47934] [-2.14829] [-0.10788] [ 1.85518] [-0.62733]
0.163767 -0.016089 (0.09304) (0.00942) [ 1.76026] [-1.70866]
LRINFMI(-1)
0.340609 (0.23430) [ 1.45373]
-0.198800 0.016242 -0.068908 0.004422 -0.065465 (0.03128) (0.03799) (0.08761) (0.01659) (0.00642) [-6.35494] [ 0.42752] [-0.78654] [ 0.26661] [-10.1998]
1.347967 0.950941 (0.35094) (0.03552) [ 3.84106] [ 26.7734]
C
3.216439 (2.74833) [ 1.17032]
1.804419 0.948488 1.387212 -0.535495 0.549920 (0.36695) (0.44563) (1.02764) (0.19454) (0.07529) [ 4.91738] [ 2.12844] [ 1.34990] [-2.75256] [ 7.30445]
-12.22337 0.934008 (4.11648) (0.41663) [-2.96938] [ 2.24183]
DIAS
0.017943 (0.02366) [ 0.75839]
0.001065 -0.002629 -0.002010 0.004852 0.000349 (0.00316) (0.00384) (0.00885) (0.00167) (0.00065) [ 0.33705] [-0.68519] [-0.22719] [ 2.89689] [ 0.53812]
0.012028 -0.002735 (0.03544) (0.00359) [ 0.33943] [-0.76257]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent
0.908807 0.900681 12.83860 0.356532 111.8377 -37.78455 0.860983 1.105085 12.13907 1.131309
0.997591 0.997376 0.228869 0.047603 4646.654 185.7174 -3.166080 -2.921978 5.423958 0.929290
0.351440 0.293648 28.80255 0.534017 6.081075 -82.62899 1.668991 1.913093 6.593317 0.635395
Determinant Residual Covariance Log Likelihood (d.f. adjusted) Akaike Information Criteria Schwarz Criteria
0.997576 0.997360 0.337536 0.057810 4618.299 164.1544 -2.777556 -2.533454 14.10258 1.125103
3.41E-19 1100.042 -18.37913 -16.42631
45
0.977772 0.975792 1.794999 0.133313 493.6557 71.40899 -1.106468 -0.862367 7.832952 0.856820
0.369022 0.312797 0.064330 0.025238 6.563226 256.1534 -4.435196 -4.191094 0.001678 0.030444
0.999936 0.999930 0.009634 0.009767 174472.5 361.5336 -6.333939 -6.089837 6.453516 1.166925
0.957835 0.954078 0.295037 0.054048 254.9281 171.6232 -2.912129 -2.668027 9.191311 0.252212
Cuadro N° 8 Estimadores del vector autorregresivo para el mecanismo crediticio Instrumento de política monetaria: Log M1 nominal Muestra: 1991:02 2000:12 Observaciones incluidas: 111 Errores estándar en ( ) y estadísticos t en [ ] LINCIDENCIA
LTCN
LM1N
LCIR
CICLO
LIS
LRINFMI LVENTA
LINCIDENCIA(-1)
0.173697 (0.09350) [ 1.85773]
0.016143 -0.012700 0.011491 0.005702 0.001931 (0.01210) (0.01495) (0.01392) (0.00654) (0.00239) [ 1.33402] [-0.84955] [ 0.82566] [ 0.87201] [ 0.80870]
0.014058 0.107434 (0.01410) (0.14014) [ 0.99669] [ 0.76662]
LTCN(-1)
0.431501 (0.40094) [ 1.07623]
0.901534 0.000241 -0.145605 0.014568 0.047312 (0.05189) (0.06410) (0.05968) (0.02804) (0.01024) [ 17.3737] [ 0.00375] [-2.43986] [ 0.51953] [ 4.62053]
0.127734 -0.917135 (0.06048) (0.60094) [ 2.11199] [-1.52616]
LM1N(-1)
0.309069 (0.36595) [ 0.84456]
-0.098719 0.900704 -0.022961 0.043968 -0.014464 (0.04736) (0.05851) (0.05447) (0.02559) (0.00935) [-2.08433] [ 15.3939] [-0.42154] [ 1.71789] [-1.54758]
0.025907 (0.05520) [ 0.46931]
LCIR(-1)
-0.704968 (0.52261) [-1.34895]
0.233982 (0.06764) [ 3.45937]
0.876814 0.000465 0.049982 (0.07779) (0.03655) (0.01335) [ 11.2720] [ 0.01272] [ 3.74488]
-0.208903 0.181575 (0.07883) (0.78330) [-2.64992] [ 0.23181]
CICLO(-1)
0.955401 (1.30530) [ 0.73194]
0.329092 0.006302 0.243182 0.221396 0.113677 (0.16894) (0.20870) (0.19429) (0.09129) (0.03334) [ 1.94803] [ 0.03020] [ 1.25166] [ 2.42518] [ 3.41006]
-0.076811 -0.591078 (0.19690) (1.95643) [-0.39010] [-0.30212]
LIS(-1)
-0.074248 (0.61321) [-0.12108]
0.211360 0.107873 0.102271 -0.064085 0.987747 (0.07936) (0.09804) (0.09127) (0.04289) (0.01566) [ 2.66320] [ 1.10026] [ 1.12050] [-1.49429] [ 63.0724]
-0.170729 0.146042 (0.09250) (0.91910) [-1.84571] [ 0.15890]
LRINFMI(-1)
0.307549 (0.33666) [ 0.91354]
-0.023265 0.049603 -0.051215 0.018333 -0.032854 (0.04357) (0.05383) (0.05011) (0.02355) (0.00860) [-0.53395] [ 0.92153] [-1.02207] [ 0.77862] [-3.82125]
0.907422 1.013190 (0.05078) (0.50460) [ 17.8683] [ 2.00793]
LVENTA(-1)
-0.196738 (0.06354) [-3.09633]
0.002521 -0.022158 0.005320 (0.00822) (0.01016) (0.00946) [ 0.30656] [-2.18109] [ 0.56255]
0.007915 -0.001292 (0.00444) (0.00162) [ 1.78117] [-0.79621]
-0.016784 0.170932 (0.00958) (0.09524) [-1.75111] [ 1.79485]
C
4.974032 (4.49180) [ 1.10736]
-0.407562 0.599155 1.342506 -0.674110 0.125770 (0.58134) (0.71818) (0.66858) (0.31415) (0.11472) [-0.70107] [ 0.83427] [ 2.00799] [-2.14582] [ 1.09637]
1.788581 -9.278622 (0.67758) (6.73249) [ 2.63968] [-1.37819]
DIAS
0.017530 (0.02429) [ 0.72158]
-0.000657 -0.002995 -0.003192 0.004695 3.61E-05 (0.00314) (0.00388) (0.00362) (0.00170) (0.00062) [-0.20900] [-0.77099] [-0.88257] [ 2.76315] [ 0.05824]
-0.002476 0.016012 (0.00366) (0.03641) [-0.67570] [ 0.43972]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent
0.904478 0.895966 13.44800 0.364895 106.2612 -40.35834 0.907357 1.151459 12.13907 1.131309
0.997629 0.997417 0.225259 0.047226 4721.290 186.5997 -3.181976 -2.937875 5.423958 0.929290
0.956267 0.952370 0.306007 0.055043 245.3866 169.5969 -2.875620 -2.631519 9.191311 0.252212
Determinant Residual Covariance Log Likelihood (d.f. adjusted) Akaike Information Criteria Schwarz Criteria
0.009445 (0.08356) [ 0.11303]
0.997531 0.997311 0.343781 0.058342 4534.203 163.1369 -2.759224 -2.515122 14.10258 1.125103
3.75E-20 1222.518 -20.58591 -18.63310
46
0.970900 0.968306 0.297938 0.054313 374.4149 171.0801 -2.902343 -2.658241 4.308007 0.305082
0.354811 0.297318 0.065779 0.025520 6.171463 254.9172 -4.412922 -4.168821 0.001678 0.030444
0.999941 0.999936 0.008771 0.009319 191634.4 366.7404 -6.427756 -6.183654 6.453516 1.166925
0.500041 (0.54850) [ 0.91165]
0.319722 0.259103 30.21116 0.546919 5.274297 -85.27898 1.716738 1.960840 6.593317 0.635395
Cuadro N° 9 Estimadores del vector autorregresivo para el mecanismo cambiario Instrumento de política monetaria: Log M1 nominal Muestra: 1991:01 2000:12 Observaciones incluidas: 112 Errores estándar en ( ) y estadísticos t en [ ] LINCIDENCIA
LTCN
LM1N
CICLO
LIPCS
LTCR
LVENTA LRINFMI
LINCIDENCIA(-1)
0.187423 (0.09248) [ 2.02657]
0.014099 -0.013555 0.003722 0.001221 0.000878 (0.01233) (0.01468) (0.00638) (0.00233) (0.00304) [ 1.14311] [-0.92356] [ 0.58340] [ 0.52399] [ 0.28888]
0.103878 0.014845 (0.13775) (0.01435) [ 0.75409] [ 1.03434]
LTCN(-1)
-0.175336 (0.55616) [-0.31526]
1.081049 -0.024925 -0.036848 0.036924 0.090976 (0.07417) (0.08826) (0.03837) (0.01402) (0.01828) [ 14.5752] [-0.28240] [-0.96034] [ 2.63443] [ 4.97668]
-0.993314 0.116410 (0.82841) (0.08631) [-1.19907] [ 1.34872]
LM1N(-1)
-0.034809 (0.32263) [-0.10789]
0.015824 0.896211 0.028750 -0.004936 0.023329 (0.04303) (0.05120) (0.02226) (0.00813) (0.01060) [ 0.36778] [ 17.5038] [ 1.29167] [-0.60704] [ 2.19987]
0.500262 -0.039051 (0.48056) (0.05007) [ 1.04100] [-0.77995]
CICLO(-1)
0.483269 (1.30273) [ 0.37097]
0.464334 -0.004082 0.202377 0.117116 0.058497 (0.17373) (0.20674) (0.08988) (0.03283) (0.04282) [ 2.67269] [-0.01974] [ 2.25174] [ 3.56738] [ 1.36613]
-0.514142 -0.135249 (1.94041) (0.20217) [-0.26497] [-0.66899]
LIPCS(-1)
0.914017 (0.68288) [ 1.33848]
-0.101777 0.133973 0.003958 0.983899 -0.109669 (0.09107) (0.10837) (0.04711) (0.01721) (0.02245) [-1.11758] [ 1.23624] [ 0.08400] [ 57.1735] [-4.88604]
0.188542 -0.070424 (1.01715) (0.10598) [ 0.18536] [-0.66453]
LTCR(-1)
1.122171 (0.97290) [ 1.15342]
-0.244282 0.103449 0.092503 0.033342 0.807171 (0.12975) (0.15440) (0.06712) (0.02452) (0.03198) [-1.88275] [ 0.67001] [ 1.37815] [ 1.35989] [ 25.2412]
0.208750 -0.106066 (1.44914) (0.15098) [ 0.14405] [-0.70249]
LVENTA(-1)
-0.195897 (0.06378) [-3.07125]
0.002004 -0.021989 0.008631 -0.000615 0.000404 (0.00851) (0.01012) (0.00440) (0.00161) (0.00210) [ 0.23558] [-2.17230] [ 1.96136] [-0.38246] [ 0.19293]
0.169733 -0.017115 (0.09501) (0.00990) [ 1.78655] [-1.72906]
LRINFMI(-1)
0.769314 (0.22860) [ 3.36534]
-0.174863 0.050891 0.033765 -0.045269 -0.040995 (0.03049) (0.03628) (0.01577) (0.00576) (0.00751) [-5.73580] [ 1.40279] [ 2.14092] [-7.85800] [-5.45596]
0.946923 1.004831 (0.34050) (0.03548) [ 2.78099] [ 28.3240]
C
-3.353422 (4.53994) [-0.73865]
2.280545 0.557755 -1.152206 0.206097 0.819616 (0.60545) (0.72048) (0.31321) (0.11441) (0.14922) [ 3.76669] [ 0.77414] [-3.67867] [ 1.80139] [ 5.49256]
-8.157044 0.638828 (6.76224) (0.70455) [-1.20626] [ 0.90671]
DIAS
0.014408 (0.02415) [ 0.59663]
0.000638 -0.003138 0.004398 0.000252 0.000873 (0.00322) (0.00383) (0.00167) (0.00061) (0.00079) [ 0.19809] [-0.81882] [ 2.63974] [ 0.41329] [ 1.09922]
0.016140 -0.003602 (0.03597) (0.00375) [ 0.44870] [-0.96123]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent
0.904256 0.895808 13.62193 0.365443 107.0380 -40.93931 0.909631 1.152354 12.12812 1.132146
0.997507 0.997287 0.242268 0.048736 4534.886 184.7067 -3.119762 -2.877039 5.410690 0.935691
0.319505 0.259461 30.22178 0.544327 5.321203 -85.56469 1.706512 1.949235 6.592978 0.632537
Determinant Residual Covariance Log Likelihood (d.f. adjusted) Akaike Information Criteria Schwarz Criteria
0.997587 0.997374 0.343073 0.057995 4685.427 165.2244 -2.771864 -2.529141 14.08722 1.131754
2.60E-21 1382.891 -23.26592 -21.32413
47
0.364771 0.308722 0.064836 0.025212 6.508008 258.5248 -4.437943 -4.195220 0.001582 0.030324
0.999952 0.999948 0.008651 0.009209 236169.0 371.3196 -6.452135 -6.209412 3.707332 1.274423
0.996146 0.995806 0.014717 0.012012 2929.364 341.5661 -5.920824 -5.678101 4.634578 0.185477
0.953432 0.949323 0.328069 0.056713 232.0362 167.7286 -2.816582 -2.573859 9.189353 0.251927
Cuadro N° 10 Estimadores del vector autorregresivo para la función de reacción del Banco Central Instrumento de política monetaria: Log M1 nominal Muestra: 1991:02 2000:12 Observaciones incluidas: 111 Errores estándar en ( ) y estadísticos t en [ ] LM1N
CICLO
LIS
LTCN
LINCIDENCIA
LVENTA
LRINFMI
LM1N(-1)
0.904855 (0.04935) [ 18.3344]
0.043089 (0.02233) [ 1.92940]
0.003945 (0.00840) [ 0.46992]
-0.012357 (0.04213) [-0.29332]
0.045389 (0.31105) [ 0.14592]
0.563363 (0.46191) [ 1.21963]
-0.050513 (0.04821) [-1.04770]
CICLO(-1)
0.009506 (0.20505) [ 0.04636]
0.221948 (0.09279) [ 2.39202]
0.131926 (0.03488) [ 3.78230]
0.414454 (0.17504) [ 2.36775]
0.699481 (1.29234) [ 0.54125]
-0.523489 (1.91915) [-0.27277]
-0.153272 (0.20031) [-0.76516]
LIS(-1)
0.098724 (0.07522) [ 1.31243]
-0.061056 (0.03404) [-1.79374]
0.950740 (0.01280) [ 74.3027]
0.037520 (0.06421) [ 0.58430]
0.460690 (0.47409) [ 0.97174]
0.023010 (0.70403) [ 0.03268]
-0.017723 (0.07348) [-0.24118]
LTCN(-1)
0.004317 (0.05916) [ 0.07298]
0.012461 (0.02677) [ 0.46550]
0.061315 (0.01006) [ 6.09335]
0.967482 (0.05050) [ 19.1587]
0.225395 (0.37283) [ 0.60455]
-0.873833 (0.55366) [-1.57828]
0.070315 (0.05779) [ 1.21674]
LINCIDENCIA(-1)
-0.012489 (0.01481) [-0.84329]
0.005186 (0.00670) [ 0.77381]
0.001321 (0.00252) [ 0.52419]
0.013375 (0.01264) [ 1.05794]
0.180345 (0.09334) [ 1.93214]
0.103488 (0.13861) [ 0.74661]
0.016862 (0.01447) [ 1.16551]
LVENTA(-1)
-0.021918 (0.01008) [-2.17358]
0.007567 (0.00456) [ 1.65824]
-0.001207 (0.00172) [-0.70357]
0.002981 (0.00861) [ 0.34631]
-0.199282 (0.06355) [-3.13559]
0.170060 (0.09438) [ 1.80186]
-0.016967 (0.00985) [-1.72233]
LRINFMI(-1)
0.042954 (0.03181) [ 1.35050]
0.020904 (0.01439) [ 1.45238]
-0.058533 (0.00541) [-10.8188]
-0.143972 (0.02715) [-5.30256]
0.680534 (0.20046) [ 3.39485]
0.929407 (0.29769) [ 3.12210]
1.013358 (0.03107) [ 32.6137]
C
0.612462 (0.39003) [ 1.57032]
-0.584521 (0.17649) [-3.31194]
0.487937 (0.06634) [ 7.35460]
1.272692 (0.33294) [ 3.82254]
0.197188 (2.45815) [ 0.08022]
-7.671270 (3.65039) [-2.10149]
0.232173 (0.38102) [ 0.60935]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent
0.997517 0.997348 0.345808 0.057943 5910.187 162.8106 -2.789380 -2.594099 14.10258 1.125103
0.305482 0.258282 0.070809 0.026219 6.472039 250.8283 -4.375284 -4.180003 0.001678 0.030444
0.999933 0.999929 0.010006 0.009856 220256.3 359.4304 -6.332079 -6.136798 6.453516 1.166925
0.997347 0.997167 0.251995 0.049463 5532.078 180.3749 -3.105853 -2.910572 5.423958 0.929290
0.902431 0.895800 13.73624 0.365187 136.0944 -41.53535 0.892529 1.087810 12.13907 1.131309
0.317899 0.271543 30.29211 0.542308 6.857724 -85.42748 1.683378 1.878660 6.593317 0.635395
0.952836 0.949631 0.330017 0.056604 297.2663 165.4048 -2.836122 -2.640840 9.191311 0.252212
Determinant Residual Covariance Log Likelihood (d.f. adjusted) Akaike Information Criteria Schwarz Criteria
2.69E-17 1014.989 -17.27908 -15.91211
48
Cuadro N° 11 Estimadores del vector autorregresivo para el mecanismo monetario Instrumento de política monetaria: Log dinero base Muestra: 1991:02 2000:12 Observaciones incluidas: 111 Errores estándar en ( ) y estadísticos t en [ ] LINCIDENCIA
LTCN
LDBASE
LIB
CICLO
LIS
LVENTA
LRINFMI
LINCIDENCIA(-1)
0.137126 (0.08959) [ 1.53067]
0.006976 -0.019206 0.004535 0.005934 0.000762 (0.01218) (0.02186) (0.03391) (0.00653) (0.00249) [ 0.57272] [-0.87866] [ 0.13375] [ 0.90821] [ 0.30561]
0.189143 0.006819 (0.13659) (0.01406) [ 1.38479] [ 0.48485]
LTCN(-1)
-0.701315 (0.43411) [-1.61552]
0.894806 -0.246451 0.060147 -0.036863 0.048313 (0.05902) (0.10592) (0.16430) (0.03166) (0.01209) [ 15.1609] [-2.32680] [ 0.36609] [-1.16424] [ 3.99740]
-0.056428 -0.014824 (0.66186) (0.06815) [-0.08526] [-0.21753]
LDBASE(-1)
-0.525159 (0.26823) [-1.95787]
0.037036 (0.03647) [ 1.01557]
0.747391 -0.126425 0.005391 0.003787 (0.06545) (0.10152) (0.01956) (0.00747) [ 11.4201] [-1.24538] [ 0.27554] [ 0.50712]
0.712269 0.004138 (0.40895) (0.04211) [ 1.74169] [ 0.09828]
LIB(-1)
0.320904 (0.15490) [ 2.07174]
0.066762 0.036772 0.916958 0.022071 0.008861 (0.02106) (0.03779) (0.05862) (0.01130) (0.00431) [ 3.17021] [ 0.97298] [ 15.6417] [ 1.95362] [ 2.05464]
-0.332435 0.069063 (0.23616) (0.02432) [-1.40767] [ 2.84025]
CICLO(-1)
0.070290 (1.25838) [ 0.05586]
0.241703 0.038585 -0.184262 0.214071 0.114823 (0.17109) (0.30703) (0.47625) (0.09178) (0.03503) [ 1.41277] [ 0.12567] [-0.38690] [ 2.33241] [ 3.27745]
0.727204 -0.366118 (1.91857) (0.19754) [ 0.37904] [-1.85337]
LIS(-1)
1.527142 (0.46144) [ 3.30953]
0.020151 0.400765 0.117235 0.000254 0.956977 (0.06274) (0.11259) (0.17464) (0.03366) (0.01285) [ 0.32121] [ 3.55964] [ 0.67130] [ 0.00755] [ 74.4914]
-0.576345 -0.031443 (0.70353) (0.07244) [-0.81922] [-0.43408]
LVENTA(-1)
-0.189655 (0.06102) [-3.10795]
0.004089 -0.031752 -0.001614 0.007940 -0.001081 (0.00830) (0.01489) (0.02309) (0.00445) (0.00170) [ 0.49285] [-2.13260] [-0.06989] [ 1.78394] [-0.63616]
0.156645 -0.015608 (0.09304) (0.00958) [ 1.68369] [-1.62938]
LRINFMI(-1)
0.623535 (0.27401) [ 2.27556]
-0.223064 0.113020 -0.004080 0.004177 -0.067594 (0.03725) (0.06686) (0.10370) (0.01999) (0.00763) [-5.98765] [ 1.69049] [-0.03934] [ 0.20899] [-8.86045]
1.012245 0.941650 (0.41777) (0.04301) [ 2.42297] [ 21.8912]
C
4.293455 (2.00542) [ 2.14093]
1.347524 1.359023 1.356435 -0.311592 0.534266 (0.27265) (0.48930) (0.75898) (0.14627) (0.05583) [ 4.94231] [ 2.77748] [ 1.78719] [-2.13029] [ 9.56909]
-9.442140 0.301493 (3.05754) (0.31481) [-3.08815] [ 0.95769]
DIAS
0.018637 (0.02325) [ 0.80152]
0.001023 0.000819 -0.001837 0.004840 0.000344 (0.00316) (0.00567) (0.00880) (0.00170) (0.00065) [ 0.32372] [ 0.14434] [-0.20876] [ 2.85382] [ 0.53126]
0.011003 -0.002728 (0.03545) (0.00365) [ 0.31037] [-0.74739]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent
0.911940 0.904093 12.39753 0.350354 116.2158 -35.84433 0.826024 1.070126 12.13907 1.131309
0.997588 0.997373 0.229160 0.047633 4640.736 185.6469 -3.164808 -2.920707 5.423958 0.929290
0.351086 0.293262 28.81826 0.534162 6.071639 -82.65926 1.669536 1.913638 6.593317 0.635395
Determinant Residual Covariance Log Likelihood (d.f. adjusted) Akaike Information Criteria Schwarz Criteria
0.993877 0.993331 0.738033 0.085482 1821.594 120.7358 -1.995240 -1.751138 13.78035 1.046795
7.99E-19 1052.695 -17.52603 -15.57322
49
0.978011 0.976051 1.775757 0.132596 499.1267 72.00717 -1.117246 -0.873144 7.832952 0.856820
0.353129 0.295487 0.065951 0.025553 6.126239 254.7727 -4.410319 -4.166217 0.001678 0.030444
0.999936 0.999930 0.009609 0.009754 174916.6 361.6747 -6.336481 -6.092379 6.453516 1.166925
0.956338 0.952447 0.305514 0.054999 245.8004 169.6864 -2.877232 -2.633130 9.191311 0.252212
Cuadro N° 12 Estimadores del vector autorregresivo para el mecanismo crediticio Instrumento de política monetaria: Log dinero base Muestra: 1991:02 2000:12 Observaciones incluidas: 111 Errores estándar en ( ) y estadísticos t en [ ] LINCIDENCIA
LTCN
LDBASE
LCIR
CICLO
LIS
LVENTA
LINCIDENCIA(-1)
0.167038 (0.09060) [ 1.84364]
0.010330 -0.017059 0.007682 (0.01217) (0.02170) (0.01353) [ 0.84897] [-0.78618] [ 0.56778]
LTCN(-1)
-0.272465 (0.41852) [-0.65102]
0.926053 -0.223201 -0.201879 -0.021258 (0.05621) (0.10023) (0.06250) (0.03022) [ 16.4763] [-2.22678] [-3.23003] [-0.70333]
0.045719 (0.01091) [ 4.19011]
0.137365 -0.485307 (0.06434) (0.63108) [ 2.13490] [-0.76901]
LDBASE(-1)
-0.642190 (0.29180) [-2.20077]
-0.035320 0.712540 -0.082599 -0.014161 -0.011397 (0.03919) (0.06989) (0.04358) (0.02107) (0.00761) [-0.90131] [ 10.1957] [-1.89547] [-0.67201] [-1.49817]
0.028552 0.846242 (0.04486) (0.44000) [ 0.63644] [ 1.92327]
LCIR(-1)
-0.044675 (0.47653) [-0.09375]
0.183092 0.080801 0.914480 0.043023 0.046667 (0.06400) (0.11413) (0.07116) (0.03441) (0.01242) [ 2.86100] [ 0.70799] [ 12.8504] [ 1.25017] [ 3.75629]
-0.208380 -0.004762 (0.07326) (0.71855) [-2.84434] [-0.00663]
CICLO(-1)
0.865802 (1.27346) [ 0.67988]
0.271606 0.069182 0.203174 0.236294 0.103026 (0.17102) (0.30499) (0.19017) (0.09197) (0.03320) [ 1.58816] [ 0.22683] [ 1.06835] [ 2.56936] [ 3.10316]
-0.054819 -0.060916 (0.19578) (1.92022) [-0.28000] [-0.03172]
LIS(-1)
1.433913 (0.56164) [ 2.55310]
0.124855 0.445506 0.204416 0.023577 0.985302 (0.07543) (0.13451) (0.08387) (0.04056) (0.01464) [ 1.65535] [ 3.31204] [ 2.43721] [ 0.58128] [ 67.2907]
-0.179722 -0.512692 (0.08635) (0.84688) [-2.08143] [-0.60539]
LRINFMI(-1)
0.944402 (0.34600) [ 2.72952]
-0.049129 0.197655 -0.002303 0.051926 -0.032049 (0.04647) (0.08287) (0.05167) (0.02499) (0.00902) [-1.05733] [ 2.38525] [-0.04457] [ 2.07812] [-3.55289]
0.899971 0.651411 (0.05319) (0.52172) [ 16.9190] [ 1.24858]
LVENTA(-1)
-0.194764 (0.06226) [-3.12808]
0.003459 -0.032144 0.006024 0.007692 -0.001114 (0.00836) (0.01491) (0.00930) (0.00450) (0.00162) [ 0.41373] [-2.15557] [ 0.64787] [ 1.71073] [-0.68621]
-0.017156 0.161823 (0.00957) (0.09389) [-1.79226] [ 1.72363]
C
3.664406 (4.41645) [ 0.82972]
-0.375625 0.575822 1.230405 -0.736369 0.120450 (0.59311) (1.05773) (0.65954) (0.31895) (0.11514) [-0.63332] [ 0.54439] [ 1.86555] [-2.30876] [ 1.04610]
1.811185 -8.368039 (0.67898) (6.65947) [ 2.66751] [-1.25656]
DIAS
0.015984 (0.02376) [ 0.67272]
-0.000217 0.000207 -0.003106 0.004492 9.92E-05 (0.00319) (0.00569) (0.00355) (0.00172) (0.00062) [-0.06807] [ 0.03643] [-0.87531] [ 2.61801] [ 0.16013]
-0.002587 0.013933 (0.00365) (0.03583) [-0.70832] [ 0.38890]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent
0.908206 0.900026 12.92325 0.357705 111.0316 -38.14929 0.867555 1.111657 12.13907 1.131309
0.997546 0.997328 0.233074 0.048038 4562.614 184.7069 -3.147872 -2.903771 5.423958 0.929290
0.956347 0.952457 0.305449 0.054993 245.8551 169.6982 -2.877444 -2.633343 9.191311 0.252212
Determinant Residual Covariance Log Likelihood (d.f. adjusted) Akaike Information Criteria Schwarz Criteria
0.993850 0.993302 0.741272 0.085670 1813.586 120.4928 -1.990861 -1.746759 13.78035 1.046795
8.96E-20 1174.148 -19.71439 -17.76157
50
0.971850 0.969341 0.288210 0.053419 387.4316 172.9225 -2.935540 -2.691438 4.308007 0.305082
0.007304 0.000874 (0.00654) (0.00236) [ 1.11632] [ 0.36996]
LRINFMI
0.338915 0.280006 0.067400 0.025833 5.753226 253.5664 -4.388583 -4.144481 0.001678 0.030444
0.999941 0.999936 0.008784 0.009326 191355.5 366.6596 -6.426299 -6.182197 6.453516 1.166925
0.016220 0.158917 (0.01393) (0.13662) [ 1.16446] [ 1.16323]
0.338356 0.279397 29.38364 0.539377 5.738885 -83.73756 1.688965 1.933067 6.593317 0.635395
Cuadro N° 13 Estimadores del vector autorregresivo para el mecanismo cambiario Instrumento de política monetaria: Log dinero base Muestra: 1991:01 2000:12 Observaciones incluidas: 112 Errores estándar en ( ) y estadísticos t en [ ] LINCIDENCIA
LTCN
LDBASE
CICLO
LIPCS
LTCR
LVENTA
LRINFMI
LINCIDENCIA(-1)
0.174514 (0.08906) [ 1.95961]
0.014643 -0.020201 0.005316 0.000985 0.002071 (0.01218) (0.02173) (0.00634) (0.00231) (0.00307) [ 1.20197] [-0.92960] [ 0.83861] [ 0.42730] [ 0.67473]
0.144481 0.012407 (0.13338) (0.01418) [ 1.08324] [ 0.87508]
LTCN(-1)
-0.393057 (0.48909) [-0.80364]
1.063501 -0.076431 -0.055486 0.040948 0.073645 (0.06691) (0.11934) (0.03482) (0.01266) (0.01685) [ 15.8954] [-0.64043] [-1.59363] [ 3.23354] [ 4.36936]
-1.036069 0.135749 (0.73252) (0.07787) [-1.41439] [ 1.74336]
LDBASE(-1)
-0.640351 (0.27824) [-2.30146]
-0.011948 0.715533 0.012736 -4.04E-05 0.004591 (0.03806) (0.06789) (0.01981) (0.00720) (0.00959) [-0.31391] [ 10.5392] [ 0.64303] [-0.00561] [ 0.47878]
0.953853 -0.032843 (0.41672) (0.04430) [ 2.28897] [-0.74143]
CICLO(-1)
0.702917 (1.25630) [ 0.55951]
0.479714 0.212193 0.217224 0.113751 0.072728 (0.17186) (0.30655) (0.08943) (0.03253) (0.04329) [ 2.79135] [ 0.69220] [ 2.42892] [ 3.49703] [ 1.67987]
-0.534229 -0.149505 (1.88157) (0.20001) [-0.28393] [-0.74749]
LIPCS(-1)
1.522380 (0.52427) [ 2.90382]
-0.064154 0.278958 0.036605 0.976069 -0.077224 (0.07172) (0.12793) (0.03732) (0.01357) (0.01807) [-0.89453] [ 2.18062] [ 0.98081] [ 71.9058] [-4.27433]
-0.002530 -0.098653 (0.78520) (0.08347) [-0.00322] [-1.18196]
LTCR(-1)
0.876776 (0.84131) [ 1.04216]
-0.225478 -0.135297 0.137208 0.026324 0.841688 (0.11509) (0.20529) (0.05989) (0.02178) (0.02899) [-1.95918] [-0.65906] [ 2.29099] [ 1.20846] [ 29.0312]
1.210748 -0.171546 (1.26003) (0.13394) [ 0.96089] [-1.28077]
LVENTA(-1)
-0.195591 (0.06218) [-3.14537]
0.001952 -0.032818 0.008527 -0.000598 0.000322 (0.00851) (0.01517) (0.00443) (0.00161) (0.00214) [ 0.22952] [-2.16285] [ 1.92638] [-0.37119] [ 0.15035]
0.167722 -0.016970 (0.09313) (0.00990) [ 1.80088] [-1.71418]
LRINFMI(-1)
0.969867 (0.22580) [ 4.29531]
-0.166736 0.125965 0.037244 -0.046569 -0.036290 (0.03089) (0.05510) (0.01607) (0.00585) (0.00778) [-5.39805] [ 2.28626] [ 2.31706] [-7.96560] [-4.66377]
0.767536 1.005199 (0.33818) (0.03595) [ 2.26963] [ 27.9627]
C
3.299127 (5.22413) [ 0.63152]
2.455167 3.259862 -1.198517 0.191395 0.842667 (0.71464) (1.27474) (0.37189) (0.13526) (0.18003) [ 3.43552] [ 2.55728] [-3.22276] [ 1.41498] [ 4.68069]
-16.69203 0.865800 (7.82422) (0.83171) [-2.13338] [ 1.04099]
DIAS
0.016212 (0.02355) [ 0.68846]
0.000635 -0.000314 0.004300 0.000262 0.000809 (0.00322) (0.00575) (0.00168) (0.00061) (0.00081) [ 0.19726] [-0.05472] [ 2.56534] [ 0.43048] [ 0.99674]
0.012467 -0.003428 (0.03527) (0.00375) [ 0.35348] [-0.91436]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent
0.908972 0.900940 12.95096 0.356329 113.1707 -38.11068 0.859119 1.101842 12.12812 1.132146
0.997506 0.997286 0.242355 0.048745 4533.252 184.6866 -3.119403 -2.876680 5.410690 0.935691
0.345875 0.288158 29.05063 0.533676 5.992612 -83.35143 1.666990 1.909713 6.592978 0.632537
Determinant Residual Covariance Log Likelihood (d.f. adjusted) Akaike Information Criteria Schwarz Criteria
0.993795 0.993247 0.771111 0.086948 1815.098 119.8705 -1.961974 -1.719251 13.76302 1.058083
6.24E-21 1333.961 -22.39217 -20.45038
51
0.356987 0.300251 0.065631 0.025366 6.292037 257.8428 -4.425764 -4.183041 0.001582 0.030324
0.999952 0.999948 0.008682 0.009226 235318.9 371.1176 -6.448529 -6.205806 3.707332 1.274423
0.995972 0.995617 0.015380 0.012280 2802.470 339.0960 -5.876714 -5.633991 4.634578 0.185477
0.953405 0.949294 0.328256 0.056729 231.8973 167.6966 -2.816011 -2.573287 9.189353 0.251927
Cuadro N° 14 Estimadores del vector autorregresivo para la función de reacción del Banco Central Instrumento de política monetaria: Log dinero base Muestra: 1991:02 2000:12 Observaciones incluidas: 111 Errores estándar en ( ) y estadísticos t en [ ] LDBASE
CICLO
LIS
LVENTA
LRINFMI
LDBASE(-1)
0.732865 (0.06333) [ 11.5723]
-0.001905 (0.01987) [-0.09587]
0.000335 (0.00735) [ 0.04559]
0.010512 (0.03683) [ 0.28540]
-0.648161 (0.26435) [-2.45186]
0.849606 (0.39802) [ 2.13458]
-0.024538 (0.04230) [-0.58004]
CICLO(-1)
0.126040 (0.29205) [ 0.43156]
0.265745 (0.09165) [ 2.89968]
0.135868 (0.03388) [ 4.01001]
0.400571 (0.16986) [ 2.35826]
0.831339 (1.21911) [ 0.68192]
-0.066889 (1.83553) [-0.03644]
-0.201063 (0.19509) [-1.03060]
LIS(-1)
0.393365 (0.11176) [ 3.51979]
-0.004353 (0.03507) [-0.12414]
0.955189 (0.01297) [ 73.6714]
0.006734 (0.06500) [ 0.10360]
1.462126 (0.46651) [ 3.13418]
-0.510152 (0.70239) [-0.72631]
-0.045178 (0.07466) [-0.60516]
LTCN(-1)
-0.198915 (0.09346) [-2.12826]
-0.008874 (0.02933) [-0.30256]
0.059749 (0.01084) [ 5.51029]
0.981170 (0.05436) [ 18.0499]
-0.287904 (0.39014) [-0.73794]
-0.488480 (0.58741) [-0.83158]
0.074989 (0.06243) [ 1.20109]
LINCIDENCIA(-1)
-0.015910 (0.02147) [-0.74117]
0.007427 (0.00674) [ 1.10264]
0.001540 (0.00249) [ 0.61840]
0.013011 (0.01248) [ 1.04217]
0.164607 (0.08960) [ 1.83703]
0.157294 (0.13491) [ 1.16591]
0.013485 (0.01434) [ 0.94038]
LVENTA(-1)
-0.032363 (0.01480) [-2.18735]
0.007249 (0.00464) [ 1.56127]
-0.001239 (0.00172) [-0.72180]
0.003014 (0.00861) [ 0.35028]
-0.195844 (0.06176) [-3.17104]
0.160796 (0.09299) [ 1.72921]
-0.016438 (0.00988) [-1.66315]
LRINFMI(-1)
0.152844 (0.05270) [ 2.90003]
0.029869 (0.01654) [ 1.80605]
-0.057938 (0.00611) [-9.47559]
-0.150951 (0.03065) [-4.92454]
0.975804 (0.22000) [ 4.43544]
0.659792 (0.33124) [ 1.99188]
1.014689 (0.03521) [ 28.8208]
C
1.252237 (0.46446) [ 2.69611]
-0.308569 (0.14575) [-2.11714]
0.510798 (0.05388) [ 9.47957]
1.146495 (0.27013) [ 4.24421]
3.538910 (1.93879) [ 1.82532]
-8.192647 (2.91909) [-2.80657]
0.035086 (0.31026) [ 0.11309]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent
0.993819 0.993399 0.745007 0.085047 2365.932 120.2138 -2.021871 -1.826589 13.78035 1.046795
0.280445 0.231543 0.073361 0.026688 5.734861 248.8628 -4.339869 -4.144588 0.001678 0.030444
0.999933 0.999929 0.010027 0.009867 219789.5 359.3127 -6.329958 -6.134676 6.453516 1.166925
0.997347 0.997167 0.252007 0.049464 5531.832 180.3724 -3.105809 -2.910527 5.423958 0.929290
0.907792 0.901526 12.98142 0.355012 144.8634 -38.39855 0.836010 1.031291 12.13907 1.131309
0.337362 0.292328 29.42777 0.534515 7.491325 -83.82085 1.654430 1.849711 6.593317 0.635395
0.952488 0.949260 0.332448 0.056812 294.9848 164.9974 -2.828782 -2.633501 9.191311 0.252212
Determinant Residual Covariance Log Likelihood (d.f. adjusted) Akaike Information Criteria Schwarz Criteria
5.97E-17 970.8545 -16.48386 -15.11689
52
LTCN LINCIDENCIA
Mecanismo monetarista Funciones impulso-respuesta a innovaciones de 1 desviación estándar estructural (línea punteada: ± 2 desv. estándar del error) Meta intermedia: Log dinero base Respuesta de CICLO a innovaciones en LDBASE
.004
Respuesta de LIS a innovaciones en LDBASE
.04
.003
.04
.03
.002
Respuesta de LIB a innovaciones en LDBASE
.06
.02
.02
.001
.00 .01
.000
-.02 .00
-.001 -.002
-.01
-.003
-.02 5
10
15
20
-.04 -.06 -.08 5
10
15
20
5
10
15
20
Mecanismo de crédito Funciones impulso-respuesta a innovaciones de 1 desviación estándar estructural (línea punteada: ± 2 desv. estándar del error) Meta intermedia: Log dinero base Respuesta de CICLO a innovaciones en LDBASE
.003
Respuesta de LIS a innovaciones en LDBASE
.02
.002 .001
Respuesta de LCIR a innovaciones en LDBASE
.03
.01
.02
.00
.01
.000 -.01
.00
-.02
-.01
-.03
-.02
-.001 -.002 -.003 -.004
-.04 5
10
15
20
-.03 5
10
15
20
5
10
15
20
Mecanismo cambiario Funciones impulso-respuesta a innovaciones de 1 desviación estándar estructural (línea punteada: ± 2 desv. estándar del error) Meta intermedia: Log dinero base Respuesta de CICLO a innovaciones en LDBASE
.005
Respuesta de LIPCS a innovaciones en LDBASE
.05
.004
.04
Respuesta de LTCR a innovaciones en LDBASE
.012 .008
.003 .03
.002
.004
.001
.02 .000
.000
.01
-.001
-.004
.00
-.002 -.003
-.01 5
10
15
20
-.008 5
10
15
53
20
5
10
15
20
Funciones de reacción del Banco Central a innovaciones de 1 desviación estándar estructural (línea punteada: ± 2 desv. estándar del error) Meta intermedia: Log dinero base Respuesta de LDBASE a innovaciones en CICLO
Respuesta de LDBASE a innovaciones en LIS
Respuesta de LDBASE a innovaciones en LTCN
.06
.06
.06
.04
.04
.04
.02
.02
.02
.00
.00
.00
-.02
-.02
-.02
-.04
-.04
-.04
-.06
-.06 5
10
15
20
-.06 5
Respuesta de LDBASE a innovaciones en LINCIDENCIA
10
15
20
5
.06
.04
.04
.04
.02
.02
.02
.00
.00
.00
-.02
-.02
-.04
-.04
-.04
-.06 10
15
20
20
.06
-.02
5
15
Respuesta de LDBASE a innovaciones en LRINFMI
Respuesta de LDBASE a innovaciones en LVENTA
.06
-.06
10
-.06 5
10
15
54
20
5
10
15
20
Referencias Banco Central de Venezuela (1990): Compilación de leyes del Banco Central de Venezuela. Colección Cincuentenaria. Banco Central de Venezuela: Ley del Banco Central de Venezuela. 1992. Cuadernos BCV. Serie divulgativa institucional. Banco Central de Venezuela (1988-1999), Informe Económico. Bello, Omar y Miguel Dorta (2001), “Desaceleración de la inflación y bandas cambiarias”, mimeo, Oficina de Consultoría Económica, Banco Central de Venezuela. Bernanke, Ben (1886), “Alternative Explanations of the MoneyIncome Correlation”, Carnegie-Rochester Conference Series on Public Policy. Bernanke, Ben (1995), “What do we know about how monetary policy affects the economy?”, Federal Reserve Bank of St. Louis Review, Vol. 77. Bernanke, Ben y Mark Gertler (1995), “Inside the Black Box: The Credit Channel of the Monetary Policy Transmission”, Journal of Economic Perspectives, Vol. 9, N° 4. Brainard, William y James Tobin (1963), “Financial Intermediaries and the Effectiveness of Monetary Controls”, American Economic Review. Cabrera, Ángel y Luis Felipe Lagos (2000), “Monetary Policy in Chile: A black box?”, Banco Central de Chile, Documentos de Trabajo, N° 88.
55
Cecchetti, Stephen (1995), “Distinguishing Theories of Monetary Transmission Mechanism”, Federal Reserve Bank of St. Louis Review, Vol. 77. Crazut, Rafael (1995), El Banco Central de Venezuela. Notas sobre su historia y evolución, 1940-1990. Colección Banca Central y Sociedad, BCV. Enders, Walter (1995), “Applied Econometric Time Series”, Wiley Series in Probability and Mathematical Statistics, New York. Guerra, José y Julio Pineda (2000), “Trayectoria de la política cambiaria en Venezuela”. Banco Central de Venezuela, Serie Documentos de Trabajo, N° 24. Guerra, José, Pedro César Rodríguez y Gustavo Sánchez (1998), “Mecanismos de transmisión de la política monetaria”, Revista del Banco Central de Venezuela, Vol. XII, N° 1. Kamin, Steven (1996), “Real Exchange Rate and Inflation in Exchange-Rate Based Stabilizations: An Empirical Examination”, Board of Governors of the Federal Reserve System, International Discussion Paper, 554. López, Oswaldo y Omar Zambrano (2000), “Relación de corto y largo plazo entre agregados monetarios e inflación en Venezuela: evidencia empírica”, mimeo. Departamento de Análisis Económico, Banco Central de Venezuela. Machado, Alfredo (1965), “Banco Central y política monetaria”. Temas del desarrollo económico de Venezuela. Mirabal, María Josefa (1999), “Programación y política monetaria en Venezuela, 1989-1998”. Serie Documentos de Trabajo, BCV, N° 21. Neumann, Manfred (1995), “The aggregative structure of the new credit view”, Federal Reserve Bank of St. Louis Review, Vol. 77. Ley del Banco Central de Venezuela, 2000.
56
Rodríguez, Pedro César y Edgar Rojas (1999), “El papel de la estructura financiera en la transmisión de la política monetaria”. Monetaria. Vol. XXII, N°1, enero-marzo. Cemla. Sims, Christopher (1986), “Are Forecasting Models Usable for Policy Analysis?”, Federal Reserve Bank of Minneapolis, Quarterly Review. Taylor, John (1993), “Macroeconomic Policy in the World Economy: From Econometric Design to Practical Operation”, W.W. Norton, New York. Taylor, John (2000), “ The Monetary Transmission Mechanism and the Evaluation of Monetary Policy Rules”, Banco Central de Chile, Documentos de Trabajo, N° 87.
57