Power Inverter Systems FINAL Year 2023 WMC Flipbook PDF

Power Inverter Systems FINAL Year 2023 WMC

40 downloads 100 Views 13MB Size

Recommend Stories


Motores Aesculap. Catálogo Aesculap Power Systems
Motores Aesculap® Catálogo 2011 Aesculap Power Systems Motores Aesculap® Aesculap, pionero en el campo de los motores quirúrgicos. Aesculap introd

GENERADOR INVERTER GASOLINA GERADOR INVERTER GASOLINA INVERTER GENSET SCARIFICATEUR AVICOLE
GENERADOR INVERTER GASOLINA GERADOR INVERTER GASOLINA INVERTER GENSET SCARIFICATEUR AVICOLE Modelos 950i 1200i INSTRUCCIONES DE USO Y MANTENIMIENTO

MOSIC - Modelling, Simulation and Control of Power Electronic Systems
Last update: 29-04-2014 32009 - MOSIC - Modelling, Simulation and Control of Power Electronic Systems Coordinating unit: 230 - ETSETB - Barcelona Sc

Game theory, optimal control design, large-scale systems modelling and control, microgrids and power systems analysis
F E L I P E VA L E N C I A A R R O YAV E personal information Born in Colombia, 23 September 1983 email [email protected] phone (M) +56

Story Transcript

T

H

IG

R

PY

C O

© FTA & QTS LLC

1

AU

N

-U TH O

R IZ ED

SE

U

O

PR

H IB IT ED

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

3-Phase Power Inverter and Control Systems

© FTA & QTS LLC

2

H IB IT ED

HEV Inverter and Controller Current Sensor Vehicle Sensors

O

Gate Supply

PR

Power Inverter Section

R IZ ED

U

Induction/Permanent Magnet Electric Motor

Current Sensor

Field

(may or may not be included)

IGBT or MOSFET (Transistors)

C O

PY

R

IG

H

T

-U

N

AU

TH O

C O N T R O L

Power Inverter Control Unit

Engine Electronic Control Unit

SE

I G B T

Current Sensor

© FTA & QTS LLC

3

T

H

IG

R

PY

C O

© FTA & QTS LLC

4

AU

N

-U TH O

R IZ ED

SE

U

O

PR

H IB IT ED

H IB IT ED

Power Inverter Systems

SE

PR

O

Power Inverters “ ” or change the power output to perform opposite of the input

R IZ ED

U

 If the input is , it is inverted (changed) to an ac sine, six-step, or square wave output

Inverter AC

C O

PY

R

IG

DC

Power

H

T

-U

N

AU

TH O

• dc-ac conversion is used in Propulsion mode

© FTA & QTS LLC

5

H IB IT ED

Power Inverter Systems

SE

PR

O

Power Inverters “ ” or change the power output to perform opposite of the input

R IZ ED

U

 If the input is , the sine wave is inverted (changed) to a dc output

Inverter AC

C O

PY

R

IG

DC

Power

H

T

-U

N

AU

TH O

• ac-dc conversion is used in Regen mode

© FTA & QTS LLC

6

Sine Wave

+ _

Stator Winding Magnetic Field (1 of 24)

+

U

SE

_

PR

O

_

+

H IB IT ED

Magnetic Attraction-Repulsion

R IZ ED

Stator Coil(s)

Direction

-U

N

AU

TH O

IGBT

C O

PY

R

IG

H

T

PM Rotor (8 Magnetic Poles)

© FTA & QTS LLC

7

T

H

IG

R

PY

C O

© FTA & QTS LLC

8

AU

N

-U TH O

R IZ ED

SE

U

O

PR

H IB IT ED

T

H

IG

R

PY

C O

© FTA & QTS LLC

9

AU

N

-U TH O

R IZ ED

SE

U

O

PR

H IB IT ED

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

Power Inverter with Integral dc-dc Converter System

© FTA & QTS LLC

10

PR

O

H IB IT ED

Lexus RX400h Hybrid – 3 Power Inverters in 1 Enclosure

U

SE

Power Inverter provides power for:

R IZ ED

 Motor Generator 1

AU

TH O

 Motor Generator 2  Motor Rear

-U

N



dc-dc Converter also resident

C O

PY

R

IG

H

T

inside of Power Inverter

© FTA & QTS LLC

11

H IB IT ED

Prius

TH O

R IZ ED

U

SE

PR

O

3-Phase Power Inverter

AU

Power Lead Terminals for Motor

-U

N

ECU Connector High Voltage A/C Compressor Terminals

C O

PY

R

IG

H

T

Power Lead Terminals for Generator High Voltage Battery Terminals

© FTA & QTS LLC

12

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

3-Phase Power Inverter - GM

© FTA & QTS LLC

13

H IB IT ED

Ford Escape Power Inverter

C O

PY

R

U

IG

H

T

-U

N

AU

TH O

R IZ ED

Battery Pack Connector

SE

PR

O

Ford Hybrid Escape Power Inverter Assembly

Courtesy: Ford Motor Co.

© FTA & QTS LLC

14

O

H IB IT ED

Power Transistor Power Module (IGBT / IPU)

Two IPMs: One each for

Drive Motor and Generator

N

AU

TH O

R IZ ED

U

SE

PR

Electric Transaxle contains

-U

Insulated Gate

H

T

BiPolar Transistor (IGBT)

R

IG

Power “Brick”

C O

PY

(3-Phase Output Unit)

© FTA & QTS LLC

15

H IB IT ED

IGBT Discrete Device Symbol Discrete IGBT

O

Collector

PR

Drain

SE

Gate

R IZ ED

U

N-Channel MOSFET

Source

NPN Transistor

Q1

AU

TH O

Base

IG

H

T

-U

N

Flywheel/Flyback Diode

C O

PY

R

Emitter

© FTA & QTS LLC

16

PR

O

H IB IT ED

Automotive Electronic Devices

PNP

R IZ ED

U

SE

NPN

BiPolar Transistor Basic Characteristics Transistor (Xsistor) means to Transfer Resistance

2.

BiPolar = 2 Polarities (Positive and Negative)

3.

Three Elements: Emitter (E), Base (B), and Collector (C)

4.

BiPolar Transistor is Current Controlled

-U

N

AU

TH O

1.



E-B Current Level Controls Current Level in the E-C Circuit

Current in E-C circuit is a ratio of the Current in the E-B Circuit

6.

Current Ratio is the GAIN or Beta of a BiPolar Transistor

IG

H

T

5.

PY

R



C O



DC GAIN or Beta is termed the Hfe

Hfe = Hybrid Parameter Forward Current Gain, Common Emitter © FTA & QTS LLC

17

PR

O

H IB IT ED

Automotive Electronic Devices

P-Channel Enhancement

R IZ ED

U

SE

N-Channel Enhancement

FET / MOSFET Transistor Basic Characteristics Transistor (Xsistor) means to Transfer Resistance

2.

BiPolar = 2 Polarities (Positive and Negative)

3.

Three Elements: Gate (G), Drain (D), and Source (S)

T

Gate Voltage controls Current through Drain and Source

IG





N-Ch Enhc’mnt: 0V = 0 Current DS; 15V = Max Current DS

Gate Voltage controls Current through DS vis Electric Field

PY

R

5.

N

FET / MOSFET Transistor is Voltage Controlled

H

4.

Gate = Base; Drain = Collector; Source = Emitter

-U



AU

TH O

1.

C O

6.

N-Channel = Low Side Drive; P-Channel = High Side Drive © FTA & QTS LLC

18

Motor PE Devices

O

Generator PE Devices

Cooling Ports

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

Boost Converter PE Devices

H IB IT ED

IGBT Internal Devices

© FTA & QTS LLC

19

R IZ ED

U

SE

PR

O

H IB IT ED

IGBT Internal Devices View

C O

PY

R

IG

H

T

-U

N

AU

TH O

IGBT (1 OF 6)

© FTA & QTS LLC

20

H IB IT ED O PR SE U R IZ ED TH O AU N -U T H IG R PY C O

Courtesy: Ford Motor Co.

© FTA & QTS LLC

21

T

H

IG

R

PY

C O

© FTA & QTS LLC

22

AU

N

-U TH O

R IZ ED

SE

U

O

PR

H IB IT ED

T

H

IG

R

PY

C O

© FTA & QTS LLC

23

AU

N

-U TH O

R IZ ED

SE

U

O

PR

H IB IT ED

H IB IT ED O PR SE U R IZ ED TH O AU N -U

Rotor Assembly

C O

PY

R

IG

H

T

Stator Assembly

© FTA & QTS LLC

24

H IB IT ED O PR SE U R IZ ED TH O AU N -U T H IG R PY C O

Courtesy: Toyota Motor Co.

© FTA & QTS LLC

25

H IB IT ED

Polarity Changes = Rotation

S

PM Rotor (8 Magnetic Poles)

AU

S

S

TH O

N

R IZ ED

U

SE

PR

O

Stator Winding Magnetic Field (1 of 24)

N

S

-U T H

N

N S

N

C O

PY

R

IG

Direction

© FTA & QTS LLC

26

H IB IT ED

Polarity Changes = Rotation

N

Direction

TH O

R IZ ED

U

SE

PR

O

Stator Winding Magnetic Field (1 of 24)

C O

PY

R

IG

H

T

-U

N

AU

PM Rotor (8 Magnetic Poles)

© FTA & QTS LLC

27

T

H

IG

R

PY

C O

© FTA & QTS LLC

28

AU

N

-U TH O

R IZ ED

SE

U

O

PR

H IB IT ED

H IB IT ED

Stator Self-Induction = Rotor Rotation

_

-U

N

+

+

PR

SE U

AU

_

R IZ ED

S T A T O R

N

N

S

R O T O R

_

C O

PY

R

IG

H

T

P O W E R

I N V E R T E R

S

TH O

+

O

Basic Motor Magnetic Circuit

© FTA & QTS LLC

29

H IB IT ED

Stator Self-Induction = Rotor Rotation

SE U

AU

_

R IZ ED

S T A T O R

N

-U

N

+

N

S

+

R O T O R

_

R

IG

H

T

P O W E R

I N V E R T E R

S

PR

_

TH O

+

O

Basic Motor Magnetic Circuit

C O

PY

Stator -Rotor

© FTA & QTS LLC

30

T

H

IG

R

PY

C O

© FTA & QTS LLC

31

AU

N

-U TH O

R IZ ED

SE

U

O

PR

H IB IT ED

H IB IT ED O

Commutation Waveforms

PR

6 - Step

Trapezoidal

Electrical Degrees

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

Sinusoidal

© FTA & QTS LLC

32

O

H IB IT ED

Traditional Six (6) Step Waveform

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

+ 400 Volts dc

C O

PY

R

IG

0 Volts dc

© FTA & QTS LLC

33

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

Gen 1 - Honda Insight 6 Stepped Waveform

© FTA & QTS LLC

34

R

H IB IT ED

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

• • • • •

3-Phase Propulsion Systems (early) Fuel Pumps Cooling Fans Blower Motors etc………

O

Trapezoid Waveform

C O

PY

Time

© FTA & QTS LLC

35

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

Sinusoidal (Sine) Waveform

© FTA & QTS LLC

36

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

3-Phase Electric Machine Sine Waves

© FTA & QTS LLC

37

Sine Wave

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

Sine and Trapezoid Waveform

C O

PY

R

IG

H

T

-U

N

Trapezoid Wave

© FTA & QTS LLC

38

PR

O

Automotive 6 Cylinder Engine Typical Firing Order: 165432 Companion Cylinders:

H IB IT ED

Traditional Six (6) Step Waveform

4 3 2

R IZ ED

U

Exhaust

H

T

-U

N

AU

TH O

360 Crankshaft Degrees

4 3 2

Compression

360 Crankshaft Degrees

Electric Machine Motor Companion Six Step IGBT Firing Order: 2&4 2&6 1&6 1&5 3&5 3&4

221

133

466

554

C O

PY

R

IG

1 6 5

Exhaust

SE

Compression

1 6 5

© FTA & QTS LLC

39

H IB IT ED

Basic Power Inverter – 6 Step Hard Switching Pattern

Q2

Q3

IGBTs (6 total)

R IZ ED

U

SE

Q1

PR

O

B+ Bus

TH O

Phase B

Q5

Q6

-U

N

AU

Q4

Phase C

IG

H

T

Phase A

C O

PY

R

B

© FTA & QTS LLC

- Bus 40

H IB IT ED

Q2

Q3

R IZ ED

U

SE

Q1

PR

O

B+ Bus

TH O

Phase B

AU

Q5

Q6

H

T

-U

N

Q4

Phase C

R

IG

Phase A

C O

PY

Typically, Six IGBT Power Transistors are used in a 3 Phase motor drive system © FTA & QTS LLC

- Bus

B

41

Phase B

Phase A

Phase B

Phase A

Phase B

U

SE

PR

O

Phase A

H IB IT ED

Traditional Six (6) Step Waveform – Using 2 Phases

Phase C

TH O

Phase B

Phase A

Phase B

Phase A

Phase B

T

-U

N

AU

Phase A

Phase C

R IZ ED

Phase C

Phase C

Phase C

C O

PY

R

IG

H

Phase C

© FTA & QTS LLC

42

Six (6) Step Waveform

H IB IT ED

6-Step

+

+

PR SE

-

O

1

R IZ ED

U

+

+

TH O

2

N

+

T

-U

+

5 -

AU

-

4

PY

R

IG

H

3

C O

Legend:

6 -

Negative ON

Positive ON © FTA & QTS LLC

OFF

43

H IB IT ED

Six (6) Step

“0” Ref Line

U

SE

PR

O

Phase “A”

“0” Ref Line

AU

TH O

R IZ ED

Phase “B”

“0” Ref Line

C O

PY

R

IG

H

T

-U

N

Phase “C”

60°

120°

180°

240°

© FTA & QTS LLC

300°

360°

44

Phase B

Phase A

Phase B

Phase A

Phase B

U

SE

PR

O

Phase A

H IB IT ED

Alternate Six (6) Step Waveform – Using 3 Phases

Phase C

TH O

Phase B

Phase A

Phase B

Phase A

Phase B

T

-U

N

AU

Phase A

Phase C

R IZ ED

Phase C

Phase C

Phase C

C O

PY

R

IG

H

Phase C

© FTA & QTS LLC

45

H IB IT ED

Alternate Six (6) Step Waveform – Using 3 Phases Phase B

Phase A

Example: Switching Cycle #1

PR

O

Power Inverter holds 2 IGBTs High & 1 Low

Phase C

B

A

-U

N

AU

TH O

R IZ ED

U

+

SE

Instead of holding only 1 High & 1 Low

C

C O

PY

R

IG

H

T

-

© FTA & QTS LLC

46

T

H

IG

R

PY

C O

© FTA & QTS LLC

47

AU

N

-U TH O

R IZ ED

SE

U

O

PR

H IB IT ED

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

3-Phase Electric Machine Sine Waves

© FTA & QTS LLC

48

T

H

IG

R

PY

C O

© FTA & QTS LLC

49

AU

N

-U TH O

R IZ ED

SE

U

O

PR

H IB IT ED

H IB IT ED O PR SE U R IZ ED TH O AU N -U T H IG R

C O

PY

550 foot-pounds by the 0.10472 radians per second (engine speed) = 550/0.10472 or 5,252.

© FTA & QTS LLC

50

H IB IT ED

Synthesizing a Sine Wave 300

PR

O

AC waveform delivered to motor by varying pulse width

TH O

R IZ ED

U

SE

V O L T S

TIME

-U

N

AU

0

100%

50%

5%

50%

IGBT PWM Signal

C O

PY

R

IG

H

T

50%

© FTA & QTS LLC

51

H IB IT ED

Sine Wave and Stator Winding Polarity Changes Polarity changes in the Stator windings, due to from self-induction generated in the Stator windings (polarity change locations are approximated)

SE

+

U

-

+

TH O

R IZ ED

V O L T S

PR

O

300

TIME

-U

N

AU

0

100%

50%

5%

50%

IGBT PWM Signal

C O

PY

R

IG

H

T

50%

© FTA & QTS LLC

52

O

H IB IT ED

Waveform Amplitude and Hz

U

SE

PR

300

-Amplitude U = Torque N AU TH O R IZ ED

V O L T S

Hz = rpm

TIME

C O

PY

R

IG

H

T

0

© FTA & QTS LLC

53

H IB IT ED

Power Inverter Sine Wave Output  Amplitude of Current Waveform = Torque

PR

O

• Higher Amplitude = Increased Electric Machine Torque

R IZ ED

U

SE

• Lower Amplitude = Decreased Electric Machine Torque

 Frequency of Waveform = Speed

TH O

• Higher Frequency = Increased Electric Machine Speed

-U

N

AU

• Lower Frequency = Decreased Electric Machine Speed

H

T

 PWM Control of IGBTs determines Amplitude while the

C O

PY

R

IG

Frequency of the PWM determines Speed (rpm)

© FTA & QTS LLC

54

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

Sine Waveform Calculations

© FTA & QTS LLC

55

H IB IT ED

Root Mean Square Defined

PR

O

 Root Mean Square (RMS) = Amount of AC power that produces the same heating effect as an equivalent DC power or equivalent DC effective power value

R IZ ED

U

SE

 Provides a method to convert AC to a unit for objectively comparing AC to DC power

AU

 To Calculate RMS:

TH O

 The RMS is a measure of the magnitude of a set of numbers.

-U

N

 SQUARE all the values measured under Sine Wave

IG

H

T

 Take the average (MEAN) of the squares

C O

PY

R

 Take the square ROOT of the average

© FTA & QTS LLC

56

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

Measurements Under Sine Wave (Curve) = RMS

C O

PY

R

More Sinewave Ordinates = More accurate conversion © FTA & QTS LLC

57

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

Triangle Waveform Creates Sine Wave (Comparators)

Courtesy: Worcester Polytechnic Institute, 2007

© FTA & QTS LLC

58

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

Triangle Waveform Creates Sine Wave (Comparators)

Courtesy: Worcester Polytechnic Institute, 2007 © FTA & QTS LLC

59

Courtesy: Texas Instruments, 2017

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

Triangle Waveform Creates PWM (Sine Wave Creation)

© FTA & QTS LLC

60

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

Triangle Waveform Creates Sine Wave (Comparators)

C O

PY

R

IG

Courtesy Worcester Polytechnic Institute, 2007

© FTA & QTS LLC

61

H IB IT ED

Advanced Power Inverter Controls  Advanced Power Inverter Controls will:

PR

O

• Adjust Carrier Frequency to increase efficiency & reduce noise

R IZ ED

U

• Be designed as 2 or 3 Level System

SE

• Example: 2kHz – 20kHz operating range

• 2 Level System = Connected to Positive & Negative Bus

TH O

• Multi-Level (Voltage) Systems are:

N

AU

• Connected to Positive & Negative Bus

-U

• But also……will apply different voltages to motor to apply

H

T

appropriate torque ranges to enhance efficiency, reducing

C O

PY

R

IG

temps, and reducing overall noise (acoustic and electrical)

© FTA & QTS LLC

62

H IB IT ED

IGBT Sine Wave Switching in Stator Windings

+

Rising Currents from IGBT

O

Through Stator causes magnetic

PR

poles in Stator windings that

+

_

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

Interact with Rotor Magnets / Bars

© FTA & QTS LLC

63

H IB IT ED

IGBT Sine Wave Switching in Stator Windings Changes in IGBT Current direction in

O

Stator causes changes in magnetic poles

PR

in Stator windings which cause

_

SE

winding polarity changes that

R IZ ED

U

Interact with Rotor Magnets / Bars

+

C O

PY

R

IG

H

T

-U

N

AU

TH O

_

© FTA & QTS LLC

64

H IB IT ED

Cartesian Plane = Creating Motor Control System y

O

+8

PR

+7

SE

+6 +5

U

+4

R IZ ED

+3 +2

-8

-7 -6

-5 -4

-3 -2

-1

-1 +1 +2 +3 +4 +5 +6 +7 +8 -2

AU

-3

x

TH O

0

+1

Control System will plot Torque and Speed based On Cartesian plane x,y coordinates

-4

N

-5

-U

-6

-8

C O

PY

R

IG

H

T

-7

© FTA & QTS LLC

65

90°

H IB IT ED

Cartesian Plane = Creating Motor Control System y

O

+8

PR

+7 +6

SE

+5

U

+4

Direction

+2

-8

-7

-6

-5

-4

-3

-2

+1 -1

-1

+1

-2

+4 +5

+6 +7

AU

-3

+2 +3

TH O

0

-4

+8

x

Vectors determine

0° (360°)

Magnitude of Current & Direction (Hz) of the Waveform

N

-5

-U

-6

-8

270°

PY

R

IG

H

T

-7

C O

180°

R IZ ED

+3

© FTA & QTS LLC

66

Quadrant 2

y

Quadrant 1

+8

O

90°

H IB IT ED

Cartesian Plane = Creating Motor Control System

PR

+7

SE

+6 +5

U

+4

R IZ ED

+3 +2

-8

-7

-6

-5

-4

-3

-2

-1

-1

-2

+1

+2 +3

+4 +5

+6 +7

x +8

0° (360°)

x, y Coordinates in Quadrants 1-4

AU

-3

TH O

0

PY

R

IG

H

T

Quadrant 3

-U

N

-4

C O

180°

+1

-5 -6 -7

Quadrant 4

-8

270° © FTA & QTS LLC

67

90° x axis Determines Electric Machine Speed-rpm (Hz)

H IB IT ED

Cartesian Plane = Creating Motor Control System y

O

+8

PR

+7

SE

+6 +5

+3 +2

-8

-7

-6

-5

-4

-3

-2

-1

-1

+1

-2

+4 +5

+6 +7

+8

x

0° (360°)

x axis determines machine Speed (Hz) & y axis determines machine Torque (current)

AU

-3

+2 +3

TH O

0

-4

N

-5

-U

-6

-8

y axis Determines Amplitude or Electric Machine Torque (Current)

270°

PY

R

IG

H

T

-7

C O

180°

+1

R IZ ED

U

+4

© FTA & QTS LLC

68

90° Quadrant 2

y

H IB IT ED

Cartesian Plane = Creating Motor Control System Quadrant 1

O

+8

PR

+7 +6

SE

+5

+3 +2

-5 -4

-3 -2

-1

+1 -1 -2

+1

+4 +5

+6 +7

AU

-3

+2 +3

TH O

-7 -6

+8

x

Lower amplitude & Hz

0° (360°)

means Lower machine speed and torque

N

-4

-U

-5 -6

R

IG

H

T

Quadrant 3

PY

-8

C O

180°

0

R IZ ED

U

+4

-7

Quadrant 4

-8

270° © FTA & QTS LLC

69

90° Quadrant 2

y

H IB IT ED

Cartesian Plane = Creating Motor Control System Quadrant 1

O

+8

PR

+7 +6

SE

+5

+3 +2

-7

-6

-5

-4

-3

-2

-1

+1

-2

+2 +3

+4 +5

+6 +7

AU

-3

+8

x

0° (360°)

Higher amplitude & Hz means Higher machine speed and torque

N

-4

-U

-5 -6

R

IG

H

T

Quadrant 3

PY

-8

-1

TH O

0

C O

180°

+1

R IZ ED

U

+4

-7

Quadrant 4

-8

270° © FTA & QTS LLC

70

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

3 Separate Cartesian Vectors to Create 3 Phase Control

© FTA & QTS LLC

71

T

H

IG

R

PY

C O

© FTA & QTS LLC

72

AU

N

-U TH O

R IZ ED

SE

U

O

PR

H IB IT ED

+150

H IB IT ED

+300

+100

O

Virtual

0

PR

Rotating vectors (x;y coordinates) create the 3φ waveforms

+50

-50

SE

C U R R E N T -

R IZ ED

V +200 O L T +150 A G E +100 +50 0

C O

PY

R

IG

H

T

-U

N

AU

TH O

-150

U

-100

+250

© FTA & QTS LLC

73

O

Phase A

R IZ ED

U

+50 Virtual

TH O

0

AU

-50

-U H IG

V +200 O L T +150 A G +100 E

Electrical Degrees

PY

R

+250

0

T

-150

+300

+50

N

-100

C O

C U R R E N T

Phase C

PR

+100

Phase B

SE

+150

H IB IT ED

3-Phase Sine Wave Current Waveforms

© FTA & QTS LLC

74

50A

86.6A

50A

100A

60°

C

A

A 86.6A

50A

100A

210°

T

180°

100A

C

A 86.6A

86.6A

C

A

100A

50A

A

86.6A

50A

86.6A

B

B

120°

150°

C

A 50A

100A

C

A

86.6A

86.6A

50A

50A

B

B

B

240°

270°

300°

B

330°

R

IG

H

B

A

50A

-U

86.6A

B

C

90°

R IZ ED

30°

86.6A

C

B

TH O

C

86.6A

B

AU

0° (360°)

A

U

B

B

C

50A

86.6A

100A

50A

A

N

50A

C

O

A

PR

C

A

SE

C

H IB IT ED

3-Phase Sine Wave 360° Electrical Switching Cycle

C O

PY

Sin Generator

© FTA & QTS LLC

75

T

H

IG

R

PY

C O

© FTA & QTS LLC

76

AU

N

-U TH O

R IZ ED

SE

U

O

PR

H IB IT ED

Q3

PR

Q2

+

SE

Q1

O

H IB IT ED

Propulsion Mode @ 180° of Sine Wave Cycle: PWM Control of Q1, Q5 and Q6

_

Phase A

Phase B

_

Battery Pack

Q6

-U

N

Q5

PWM

T

PWM

-

R

IG

H

+

Phase C

PY C O

Q4

AU

TH O

R IZ ED

U

PWM

© FTA & QTS LLC

77

Q3

PR

Q2

+

SE

Q1

O

H IB IT ED

Propulsion Mode @ 180° of Sine Wave Cycle: PWM Control of Q1, Q5 and Q6

_

Phase A

Phase B

_

Battery Pack

Q6

-U

N

Q5

PWM

T

PWM

-

R

IG

H

+

Phase C

PY C O

Q4

AU

TH O

R IZ ED

U

PWM

© FTA & QTS LLC

78

H IB IT ED

Advantages & Disadvantages of 6-Step/Trapezoid Control

 Advantages:

PR

O

• Control Algorithms are simple (hard switching pattern)

U

SE

• Only 2 Phases required are required to active at one time (although 3 could be used)

R IZ ED

• Less switching losses (compared to traditional Si IGBT)

AU N

 Disadvantages

TH O

• Higher average battery terminal voltages

-U

• Torque ripple at every commutation point

H

T

• Less torque is produced

C O

PY

R

IG

• Higher acoustic and electrical noise

© FTA & QTS LLC

79

H IB IT ED

Advantages & Disadvantages Sine Control

PR

R IZ ED

• Maximum torque production

U

• Smooth motion rotation

SE

• No torque ripple in commutation

O

 Advantages:

TH O

 Disadvantages

AU

• 3-Phases are used at same time

N

• Higher Switching losses (when creating waveform)

-U

• Higher Switching Frequencies

H

T

• On-the-fly Carrier Frequency Changes

C O

PY

R

IG

• Control Algorithms are complex and mathematical

© FTA & QTS LLC

80

Power Inverter ECU

(ABS, ECM, Trans, Battery etc.)

Resolver

PR Current Sensors

Tables to Shape Waveforms

X

AU

Position Information

Waveform Generator Phases U,V,& W

Six-Pack Motor Drive IGBTs

Current Sensor To Motor 1 of 3 Ø

Power Computation

Phase U,V or W Current

Signal from Resolver

C O

PY

R

IG

H

T

Torque Computation

Voltage & Waveform Control Provide control of waveform type and amount of voltage boost to the motor(s)

-U

N

PI

Torque Achieved

TH O

R IZ ED

Sensor Inputs

6-Pack Motor Drive (IGBTs)

SE

I/O

Voltage & Waveform Control

U

HV ECU

O

µC Unit

CAN

Torque Request

H IB IT ED

Propulsion Control Block Diagram

Sensor Inputs

Other System ECUs

© FTA & QTS LLC

81

Creation Process

PR



.9 .8 .7 .6 .

H IB IT ED

1 2 3 4 .

y

O



x

Sine Wave

U

SE



Torque Model Algorithm

Rotating Vector

Torque Model Computation (Current) Vector Calculation & Integrator

R IZ ED

Electric Machine

AU

TH O

IGBT Modules

Integrator

CAN Message

0101100110010101

-U T H

R PY C O

8 Bit Sine Table Lookup

N

IGBT Gate Drive

IG

Fault Status’ • Over Current • Under Current • Over Temp • Input/Output PWM

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

μPU Port

Analog to PWM Converter

© FTA & QTS LLC

High Speed Digital to Analog Conversion 1,2,3,4,5 …

0 1 0 1…

82

T

H

IG

R

PY

C O

© FTA & QTS LLC

83

AU

N

-U TH O

R IZ ED

SE

U

O

PR

H IB IT ED

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

GM 2-Mode 3 Phase Current Waveforms

© FTA & QTS LLC

84

Upper Current Regulation Band

H IB IT ED

2ΔI

+I

O

Reference Current Waveform (i.e., Desired Current)

R IZ ED

U

SE

PR

or I*

Tolerance Band

-I

-I = *I – ΔI is lower Current boundary +I = *I + ΔI is upper Current boundary

IG

H

T

-U

N

AU

TH O

Lower Current Regulation Band

C O

PY

R

I = Current

PWM % © FTA & QTS LLC

85

T

H

IG

R

PY

C O

© FTA & QTS LLC

86

AU

N

-U TH O

R IZ ED

SE

U

O

PR

H IB IT ED

C O

H IB IT ED N

PY

R

IG

H

T

-U

Current Regulation At Low Current Level

AU

TH O

R IZ ED

U

SE

PR

O

Current Regulation at High Current Level

© FTA & QTS LLC

87

T

H

IG

R

PY

C O

© FTA & QTS LLC

88

AU

N

-U TH O

R IZ ED

SE

U

O

PR

H IB IT ED

H IB IT ED O PR SE U R IZ ED

Cruising

C O

PY

R

IG

H

T

-U

N

AU

TH O

Energy Lost = Not Recoverable

© FTA & QTS LLC

89

H IB IT ED

Regenerative Electric Machine Braking Controls and Circuits

SE

PR

O

There are numerous strategies for controlling electric machine regenerative braking such as:

R IZ ED

U

1. Single Switch – One IGBT Control 2. Two Switch – Two IGBT Control

AU

TH O

3. Three Switch – Three IGBT Control

-U

N

 IGBT control can be implemented using or Sine Wave controls Six-Step (6-Vector)

C O

PY

R

IG

H

T

 Although 1 or 2 Switch strategies can be used to control Regen at various road speeds, the Examples in this presentation will use 3-Switch IGBT control

© FTA & QTS LLC

90

H IB IT ED

Regenerative Electric Machine Braking Controls and Circuits: Modulating Regen

PR

O

 To safely control the vehicle Regen braking must be controlled or

R IZ ED

U

SE

“modulated” to ensure that directional stability of the vehicle is maintained

 Therefore, the Hybrid and Motor Controllers will modulate (via 0 – 100% PWM)

AU

TH O

the electric machine output to increase Battery Pack SOC%

-U

N

 One method of the PWM modulation method is for the controls to oscillate

T

between Coasting and Flywheel Diode (100%) feedback – resulting in an

C O

PY

R

IG

H

“average” current transmitted to the battery pack

© FTA & QTS LLC

91

H IB IT ED

IGBT Flywheel / Flyback Diodes

Q2

Q3

R IZ ED

U

SE

Q1

PR

O

B+ Bus

TH O

Phase B

AU

Q5

Q6

H

T

-U

N

Q4

Phase C

R

IG

Phase A

C O

PY

-

B Bus © FTA & QTS LLC

92

Coasting: No Regen – Q4 Flywheel Diode and PWM of Q5 & Q6 Controls Coasting

Q2

Q3

+

+

Phase A

Phase B

N

PWM

-U

PWM

Battery Pack

Q6

T

Q5

PWM

_

Phase C

-

C O

PY

R

IG

H

Q4

+

AU

TH O

R IZ ED

U

SE

Q1

PR

O

H IB IT ED

(Example illustration of only one (1) of the possible switching cycles)

© FTA & QTS LLC

93

Modulated Regen Control: 100% Regen using Flywheel Diodes

O

H IB IT ED

Diode Operation is Controlled by PWM control of IGBTs

+

PR

Q2

Q3

+

Phase A

Phase B

Battery Pack

Q6

T

-U

N

Q5

-

R

IG

H

_

Phase C

PY C O

Q4

+

AU

TH O

R IZ ED

U

SE

Q1

© FTA & QTS LLC

94

H IB IT ED

Regenerative Braking Waveform

Vehicle Placed in Neutral (No Regen Commanded) Vehicle in Drive during Braking (Regen is Commanded)

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

Vehicle Placed back in Drive for Acceleration

© FTA & QTS LLC

95

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

Regenerative Braking Waveform Video

© FTA & QTS LLC

96

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

Regenerative Braking Diagnostic Concerns

© FTA & QTS LLC

97

T

H

IG

R

PY

C O

© FTA & QTS LLC

98

AU

N

-U TH O

R IZ ED

SE

U

O

PR

H IB IT ED

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

Toyota Gen 1 Prius Hybrid Power Inverter

Courtesy: Toyota Motor Co.

© FTA & QTS LLC

99

H IB IT ED

Power Inverter Bus Capacitors

PR

O

 Why Use Large Capacitors in the Power Inverter?

SE

• Reduce “Harmonics” (electrical noise within waveform)

R IZ ED

U

• Reduce Electric Machine Heat caused by Harmonics

TH O

• Increase Power Factor (not Efficiency)

AU

• A measure of how efficiently the load current is being converted into

-U

N

useful work output

H

T

• As Capacitors Age: Power Factor decreases and Harmonics

C O

PY

R

IG

(Heat) increase….reducing machine life

© FTA & QTS LLC

100

TH O

R IZ ED

U

SE

PR

O

X Capacitor(s)

H IB IT ED

Power Inverter Bus Filtering

AU

Common Mode Choke - an Inductor used in electronic circuits that is utilized to block high-frequency, alternating current (AC) in a circuit while allowing lower frequencies, or direct current (DC), to pass through.

-U

N

Decoupling Capacitors - are used to filter out voltage spikes and pass through only the DC component of the signal. The idea is to use a capacitor in such a way that it shunts or absorbs the noise making the DC signal smooth.

IG

H

T

Y Capacitor - is a bypass capacitor that is used to reduce Electromagnetic Magnetic Interference(EMI). The Y capacitor also can be called a filter capacitor.

C O

PY

R

DC link capacitors - are commonly used as an intermediary buffer between an input source to an output to help offset the effects of inductance in inverters, motor controllers, and battery systems. They also serve as filters that protect EV subsystems from voltage spikes, surges, and electromagnetic interference (EMI). © FTA & QTS LLC

101

DC Input Capacitors and Inductors to reduce IGBT Module electrical (EMC) noise by using bus bar in lieu of cables or shortening cables

N

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

Example: Sine Wave Input Filter

H

T

-U

Common Mode Choke shown

C O

PY

R

IG

Courtesy: EPCOS

© FTA & QTS LLC

102

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

2001 IPM Waveform with Distortion

© FTA & QTS LLC

103

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

2001 IPM Waveform with Distortion

© FTA & QTS LLC

104

T

H

IG

R

PY

C O

© FTA & QTS LLC

105

AU

N

-U TH O

R IZ ED

SE

U

O

PR

H IB IT ED

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR

O

H IB IT ED

Power Inverter & Controls Analysis

© FTA & QTS LLC

106

H IB IT ED O •

Waveform widths identical?

PR

Waveform peaks (+ and -) identical?

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE



© FTA & QTS LLC

107

H IB IT ED O

2. Is there waveform symmetry?

Waveform peaks (+ and -) identical?



Waveform widths identical?

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR



© FTA & QTS LLC

108

H IB IT ED

Waveform peaks (+ and -) identical?



Waveform widths identical?

IG

H

T

-U

N

AU

TH O

R IZ ED

U

SE

PR



O

3. Is there waveform symmetry?

C O

PY

R

Oscillating waveforms can be caused by worn bearings or low battery capacity (low battery causes reduced performance mode) © FTA & QTS LLC

109

H IB IT ED SE

Symmetrical upper and lower boundary amplitudes? Regulation only in the waveform cresting areas?

C O

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

• •

PR

Distributed winding machines:

U



O

4.

© FTA & QTS LLC

110

Concentrated winding machines:

O

PR

(boundaries are much higher and lower than Distributed winding machines)

Regulation only in the waveform cresting areas?

(regulation will be in majority of waveform because of parallel winding connections of concentrated design)

PY

R

IG

H

T

-U

N

AU

TH O

R IZ ED

U



Symmetrical upper and lower boundary amplitudes?

SE



C O



H IB IT ED

5.

© FTA & QTS LLC

111

H IB IT ED O

Distributed Winding Waveform

SE U R IZ ED

TH O

Example Apps: Ford, GM, Lexus, Toyota

PR

Appearance is very symmetrical and Current Regulation is less aggressive (smoother)

AU

Concentrated Winding Waveform

T

-U

N

Appearance is less symmetrical and Current Regulation is more aggressive (choppy)

C O

PY

R

IG

H

Example Apps: Honda, Hyundai

© FTA & QTS LLC

112

H IB IT ED

Basic Power Inverter Diagnostic Codes  Drive Motor Inverter Temp High/Low

 Drive Motor Performance

 Drive Motor Inverter Performance

 Controller Performance/Error

 Generator Inverter Temp High/Low

 Controller Communication

 Inverter Cooling System Performance

SE

U

 Isolation Fault

R IZ ED

 Generator Inverter Performance

PR

O

 Generator Performance

 Accelerator Pedal Sensor

TH O

 Regenerative Braking

AU

 Battery Pack Voltage Correlation

 Cruise Control  PRND Switch

N

 IGBT Enable Fault

 Direction/Speed Sensor

-U

 High Voltage Interlock Loop

 Brake Torque Control Correlation

 Controller Hardware Failure

C O

PY

R

IG

H

T

 Battery Pack Pre-charge

© FTA & QTS LLC

113

Get in touch

Social

© Copyright 2013 - 2024 MYDOKUMENT.COM - All rights reserved.