Story Transcript
Tema 5 (1a parte) Los ciclos keynesianos Beatriz de Blas Universidad Aut´ onoma de Madrid
Noviembre 2009
Beatriz de Blas (UAM)
Tema 5
Noviembre 2009
1 / 19
Introducci´ on
Introducci´on Teor´ıa macroecon´omica cl´asica: I
I I
perturbaciones que alejan a la econom´ıa de los niveles naturales de empleo y producci´ on son temporales y breves, las fuerzas del mercado actuar´ıan para devolverlos a esos niveles, son fluctuaciones eficientes y el gobierno no deb´ıa estabilizarlas; la pol´ıtica monetaria s´ olo debe garantizar la estabilidad de precios; la pol´ıtica fiscal debe evitar los d´eficits presupuestarios que expulsan inversi´ on privada y reducen el crecimiento.
Los a˜ nos de la Gran Depresi´ on suponen un duro ataque para estas teor´ıas. Keynes: I I
los recursos se subutilizan debido a la falta de demanda; el gobierno puede afectar a la producci´ on y empleo v´ıa pol´ıtica fiscal y monetaria.
Hasta los a˜ nos 1970: triunfo y desarrollo de las teor´ıas keynesianas. Beatriz de Blas (UAM)
Tema 5
Noviembre 2009
2 / 19
Introducci´ on
Mitad de los 1970s: tras la Gran Inflaci´ on triunfo de las expectativas racionales (Lucas y Sargent). Hasta finales de los 1980 explosi´ on de la macroeconom´ıa: I
Neo-cl´asicos: (fresh water ) F F F
I
seguidores de las ER de Lucas y Sargent; desarrollo del modelo de CER, liderado por Prescott; 3 principios b´ asicos: microfundamentos, equilibrio general, ver hasta d´ onde se puede llegar sin o con pocas imperfecciones.
Neo-keynesianos: (salt water ) F F F
convencidos de que sus teor´ıas eran correctas; buscar mejores fundamentos para las imperfecciones que asum´ıan; agenda: examinar la naturaleza de diversas imperfecciones, equilibrio parcial.
A˜ nos 1990: convivencia de los dos enfoques I I
I
las fluctuaciones del PIB no son necesariamente malas; las medidas de pol´ıtica deben tener en cuenta el nivel acutal de producto, el que habr´ıa sin imperfecciones, entre otras cuestiones; controlar la inflaci´ on es bueno tanto para el producto como para la inflaci´ on: divina coincidencia (Blanchard y Gal´ı).
Beatriz de Blas (UAM)
Tema 5
Noviembre 2009
3 / 19
Esquema
Esquema
1
Introducci´on al modelo keynesiano
2
El mercado de bienes
3
El mercado de dinero
4
La curva de demanda agregada
5
La oferta agregada de la s´ıntesis neocl´asica
Beatriz de Blas (UAM)
Tema 5
Noviembre 2009
4 / 19
Repaso del modelo CER
Repaso: modelo de CER Hogares Ct = C d (rt , Riqueza) Nt = N s (rt , Riqueza) It = I d (At+1 , Kt+1 , Kt , rt ) Yt = Y d (rt , Riqueza, At+1 , Kt+1 , Kt , Gt )
Beatriz de Blas (UAM)
Tema 5
Noviembre 2009
5 / 19
Repaso del modelo CER
Repaso: modelo de CER Hogares Ct = C d (rt , Riqueza)
Empresas
Nt = N s (rt , Riqueza)
Nt = N d (At , Kt )
It = I d (At+1 , Kt+1 , Kt , rt )
Yt = Y s (rt , Riqueza, At , Kt )
Yt = Y d (rt , Riqueza, At+1 , Kt+1 , Kt , Gt )
Beatriz de Blas (UAM)
Tema 5
Noviembre 2009
5 / 19
Repaso del modelo CER
Repaso: modelo de CER Hogares Ct = C d (rt , Riqueza)
Empresas
Nt = N s (rt , Riqueza)
Nt = N d (At , Kt )
It = I d (At+1 , Kt+1 , Kt , rt )
Yt = Y s (rt , Riqueza, At , Kt )
Yt = Y d (rt , Riqueza, At+1 , Kt+1 , Kt , Gt )
Mercado de dinero Mtd = P · L (Yt , rt ) Mts dada Mt = P · L (Yt , rt )
Beatriz de Blas (UAM)
Tema 5
Noviembre 2009
5 / 19
Repaso del modelo CER
Repaso: modelo de CER Hogares Ct = C d (rt , Riqueza)
Empresas
Nt = N s (rt , Riqueza)
Nt = N d (At , Kt )
It = I d (At+1 , Kt+1 , Kt , rt )
Yt = Y s (rt , Riqueza, At , Kt )
Yt = Y d (rt , Riqueza, At+1 , Kt+1 , Kt , Gt )
Mercado de dinero Mtd = P · L (Yt , rt ) Mts
Gobierno
dada
Gt = Tt
Mt = P · L (Yt , rt )
Beatriz de Blas (UAM)
Tema 5
Noviembre 2009
5 / 19
1. El modelo keynesiano
1. El modelo keynesiano Diferencias respecto al modelo de CER precios r´ıgidos en el corto plazo capital constante a corto plazo shocks de demanda basados en expectativas, confianza ... (ε) papel crucial para la intervenci´ on del gobierno: pol´ıticas fiscal y monetaria rigideces en salarios
Beatriz de Blas (UAM)
Tema 5
Noviembre 2009
6 / 19
2. El mercado de bienes
2. El mercado de bienes Dados los supuestos anteriores, tenemos que Yt = C d Yt , Tt , Vt , εCt + I d Yt , rt , εIt + Gt es decir Yt = Y
d
Yt , rt , Tt , Vt , Gt , εt + − −
+
+
+
donde hemos supuesto: εCt ≡ εIt ≡ εt
Beatriz de Blas (UAM)
Tema 5
Noviembre 2009
7 / 19
2. El mercado de bienes
Objetivo: explicar los ciclos (desviaciones de una tendencia de largo plazo) Hasta ahora hemos trabajado con funciones impl´ıcitas A partir de ahora vamos a linearizar (es decir, hacerlas lineales) las funciones impl´ıcitas para calcular esas desviaciones porcentuales respecto de la tendencia de largo plazo Pasos: 1
2
definir los valores de largo plazo Y , r , G , ε d Yt , rt , Gt , εt diferenciamos y luego partiendo de Yt = Y +
−
+
+
aproximamos
Beatriz de Blas (UAM)
Tema 5
Noviembre 2009
8 / 19
2. El mercado de bienes
Linearizar la demanda agregada Yt = Y
1
Diferenciamos totalmente Yt = Y d
dYt =
d
Yt , rt , Gt , εt −
+
+
+
Yt , rt , Gt , εt : + − +
+
∂Ytd ∂Ytd ∂Ytd ∂Ytd dYt + drt + dGt + dεt ∂Yt ∂rt ∂Gt ∂εt
es decir dYt = YY dYt + Yr drt + YG dGt + Yε dεt 2
Dividimos ambos lados de la igualdad por Y dYt YY Yr YG Yε = dYt + drt + dGt + dεt Y Y Y Y Y
Beatriz de Blas (UAM)
Tema 5
Noviembre 2009
9 / 19
2. El mercado de bienes
Sabemos que Yt = Y e yˆt y aproximadamente Yt ≈ Y (1 + yˆt ) adem´as ln Yt = ln Y + yˆt , entonces: Yt − Y dYt ≈ ≈ yˆt = ln Yt − ln Y Y Y G ε yt − y = YY (yt − y ) + Yr (rt − r ) + YG (gt − g ) + Yε (t − ) |{z} |{z} Y Y ln Yt
ln Y
ln Yt − ln Y : cercano a la transformaci´ on que hacemos en los datos desviaciones de la demanda respecto de los valores de l.p. se pueden explicar por: I I I
shocks al gasto p´ ublico (pol´ıtica fiscal) shocks al tipo de inter´es real shocks de confianza
Beatriz de Blas (UAM)
Tema 5
Noviembre 2009
10 / 19
3. El mercado de dinero
3. El mercado de dinero Objetivo: determinar (Y , π) por el lado de la demanda Debemos entender la relaci´ on entre el tipo de inter´es real y (Y , π) Esto depende de la pol´ıtica monetaria Regla de pol´ıtica monetaria: regla o principio que indica c´omo debe elegirse el instrumento de la pol´ıtica monetaria del banco central. ¿Cu´al es el instrumento de pol´ıtica monetaria del banco central? Dos opciones: I I
seguir una regla de crecimiento constante del dinero seguir una regla de tipos de inter´es o regla de Taylor
Beatriz de Blas (UAM)
Tema 5
Noviembre 2009
11 / 19
3. El mercado de dinero
3.1 La regla de crecimiento constante del dinero
3.1 La regla de crecimiento constante del dinero Objetivo: ajustar el tipo de inter´es a corto plazo para que la demanda de dinero siga el crecimiento constante de la base monetaria. Principal defensor: Milton Friedman (a˜ nos 60). Principal supuesto: la demanda de dinero es estable y depende poco del tipo de inter´es. Lo mejor en este caso es mantener una tasa de crecimiento del dinero (µ) constante, con el fin de estabilizar la econom´ıa. Subyace la teor´ıa cuantitativa del dinero: M ·V =P ·Y ⇒µ+ν =π+γ Si ν = 0 y estamos en el pleno empleo (γ = 0), entonces π = µ . Como r ≈ i − π ⇒ i ≈ r + µ Beatriz de Blas (UAM)
Tema 5
Noviembre 2009
12 / 19
3. El mercado de dinero
3.2 La regla de Taylor
3.2 La regla de Taylor Se debe a John Taylor (1993) it = i + ρy (yt − y ) + ρπ (πt − π ∗ ) donde ρy , ρπ > 0, π ∗ es el objetivo de pol´ıtica monetaria, i = r + µ. Supongamos que it = rt + πt , de donde rt = r + ρy (yt − y ) + (ρπ − 1) (πt − π ∗ ) Resultados de estimaciones para EE.UU.: ρy > 0 pero bajo, ρπ > 1 el llamado principio de Taylor Evidencia emp´ırica regla de crecimiento constante de la cantidad de dinero regla de Taylor Beatriz de Blas (UAM)
Tema 5
Noviembre 2009
13 / 19
3. El mercado de dinero
3.2 La regla de Taylor
Monetary policy rule in a graph 27_05
INTEREST RATE (PERCENT) Monetary policy rule 7 6
Interest rate when inflation is on target
5 4 3 2
Inflation target
1
0
Beatriz de Blas (UAM)
1
2
3
Tema 5
4 5 INFLATION RATE
6 (PERCENT)
Noviembre 2009
14 / 19
FRBSF 3. Economic Letter El mercado de dinero
2
3.2 La regla de Taylor
though the econ later this year. Giv recession, it will nomic growth be omy is eliminated turns positive.
Figure 2 F Federalfunds funds rate Federal rate Percent 10 8 Fed's target rate
6 4 2 0
Recommended target rate from a Taylor rule Monetary policy funds rate shortfall
-2 -4 -6
88 90 92 94 96 98 00 02 04 06 08 10
benchmark for calibrating the appropriate stance of monetary policy going forward.The dashed lines in
Fuente: FRBSF Economic Letter, 2009-17. Beatriz de Blas (UAM)
Tema 5
Economic theory to communicate shortfall. Moneta of shaping privat ture path of shor long-term intere order to achieve (McGough, Rud current situation, it “anticipates tha to warrant excep funds rate for an banks have been ration of low rat of Sweden has rec to keep its policy
Noviembre 2009
15 / 19
3. El mercado de dinero
Funciones de reacci´ on estimadas ρc π Bundesbank alem´an 1.31 Banco de Jap´ on 2.04 Reserva Federal EE.UU. 1.83 BCE 1.74
3.2 La regla de Taylor
del tipo de inter´es de cuatro bancos centrales ρby Per´ıodo Frecuencia 0.25 1979:3-1993:12 (datos mensuales) 0.08 1979:4-1994:12 (datos menusales) 0.56 1982:10-1994:12 (datos mensuales) 0.82 1999:1-2003:1 (datos trimestrales)
Fuente: Clarida, Gal´ı y Gertler, EER (1998).
Beatriz de Blas (UAM)
Tema 5
Noviembre 2009
16 / 19
4. La curva de demanda agregada
4. La curva de demanda agregada Recordad que tenemos yt − y = YY (yt − y ) + Yr (rt − r ) + YG
G ε (gt − g ) + Yε (t − ) Y Y
y una regla de Taylor rt − r = ρy (yt − y ) + (ρπ − 1) (πt − π) de donde ⇓ Yt = Ytd
Beatriz de Blas (UAM)
πt , Gt , εt −
Tema 5
+
+
Noviembre 2009
17 / 19
4. La curva de demanda agregada
La curva de DA gr´aficamente e Si ↑ π ⇒↑ i|πt+1
fijas
⇒↑ r ⇒↓ It ⇒↓ Ytd
π
DA
yt Beatriz de Blas (UAM)
Tema 5
Noviembre 2009
18 / 19
4. La curva de demanda agregada
Un shock positivo de pol´ıtica fiscal π
DA’ DA
yt Beatriz de Blas (UAM)
Tema 5
Noviembre 2009
19 / 19