Story Transcript
CLASE 5 UNIDAD 2
VALOR OPTIMO DEL INSUMO Factores a Considerar: P(X) = Costo del Insumo
P(Y) = Precio de venta del producto
Valor de la producción marginal = VPMa =PMa * P(Y)
Condición de optimización
VPMa P(X)
3
Asignación óptima con un insumo variable Ejercicio Resuelto No. 3: Se tienen datos del crecimiento de pollos en una granja en relación a la cantidad de alimentos que se le proporciona durante su crecimiento, para hacer el análisis económico se harán los siguientes pasos: a) Graficar la función de producción b) Determinar producción total, la producción marginal y elasticidad c) Graficar la Producción total y la producción marginal y determinar que Etapas de la Producción se cumplen con estos datos d) Determinar la relación entre el valor de la producción marginal y costo del insumo e) Determinar el valor óptimo del insumo base (alimento para pollos), analítica y gráficamente
Asignación óptima con un insumo variable •
Datos: 5
•
Caso: Producción de Pollos de Engorde. Función de Producción en Avicultura
•
Peso Inicial promedio de los pollitos (g) = 42
•
Precio del alimento para pollo por kg = $6.00
•
Precio del pollo por kg = $15.00
•
Tabla de relación insumo-producto
Economía de la Producción. Maestría en Manejo y Explotación de Agrosistemas de la Caña de Azúcar
27/02/2014
Datos: 6
Semana
Insumo X (g de alimento)
Producto Y (g pollo vivo)
1 2 3
165 505 1035
165 413 840
4 5 6
1805 2675 3725
1281 1750 2100
Economía de la Producción. Maestría en Manejo y Explotación de Agrosistemas de la Caña de Azúcar
27/02/2014
a) Graficar la Función de Producción 7
Economía de la Producción. Maestría en Manejo y Explotación de Agrosistemas de la Caña de Azúcar
27/02/2014
b) Estimación de los Valores de la Producción Promedio (PP), la Producción Marginal (PMaP) y elasticidad 8
Semana
X
Y
1
165
165
2
505
413
3
1035
840
4
1805
1281
5
2675
1750
6
3725
2100
Producción Promedio (Y/X)
Economía de la Producción. Maestría en Manejo y Explotación de Agrosistemas de la Caña de Azúcar
PMaP= DY/ D X
27/02/2014
Elasticidad Pma/PP
b) Estimación de los Valores de la Producción Promedio (PP), la Producción Marginal (PMaP) y elasticidad 9
Semana
X
Y
Producción Promedio (Y/X)
1
165
165
1.00
0.745
0.745
2
505
413
0.82
0.729
0.892
3
1035
840
0.81
0.806
0.993
4
1805
1281
0.71
0.573
0.807
5
2675
1750
0.65
0.539
0.824
6
3725
2100
0.56
0.333
0.591
Economía de la Producción. Maestría en Manejo y Explotación de Agrosistemas de la Caña de Azúcar
PMaP= DY/ D X
Elasticidad
27/02/2014
c) Grafica de Producción total, producción marginal y Etapas de la Producción 10
Peso vivo (g)
PP y PMaP
Producción Promedio (Y/X) PMaP=Var Y/Var X
1.20 1.00 0.80 0.60 0.40 0.20 0.00
Etapa 2
0
1
2
3
4
5
Semanas
Economía de la Producción. Maestría en Manejo y Explotación de Agrosistemas de la Caña de Azúcar
27/02/2014
6
7
c) Grafica de Producción total, producción marginal y Etapas de la Producción 11
Peso vivo (g)
PP y PMaP
Producción Promedio (Y/X) PMaP=Var Y/Var X
1.20 1.00 0.80 0.60 0.40 0.20 0.00
Etapa 2
0
1
2
3
4
5
6
Semanas
Observaciones: En este caso se puede observar sólo la Etapa 2, por la naturaleza del producto.
7
d) Asignación óptima con un insumo variable Precio alimento ($/kg) = 6.00 Precio pollo vivo ($/kg) = 15.00 Relación P(Y)/P(X)= 2.5
P(X) = 0.6 centavos/galimento P(Y) = 1.5 centavos/g pollo12
Valor de la producción marginal = VPMaP =PMaP*P(Y) Condición de optimización = VPMa P(X) Semana 1
Días 7
PMaP 0.745
VPMa ($/g) 0.0112
P(X) ($/g) 0.006
2 3 4
14 21 28
0.729 0.806 0.573
0.0109 0.0121 0.0086
0.006 0.006 0.006
5 6
35 42
0.539 0.333
0.0081 27/02/2014 0.0050
0.006 0.006
Economía de la Producción. Maestría en Manejo y Explotación de Agrosistemas de la Caña de Azúcar
VPMa ($/g) P(X) ($/g)
Valor de la PMaP y Precio del Insumo P(X)
$/g
0.0150
13
0.0100 0.0050 0.0000 0
1
2
3 4 Semanas
Economía de la Producción. Maestría en Manejo y Explotación de Agrosistemas de la Caña de Azúcar
5
27/02/2014
6
7
VPMa ($/g) P(X) ($/g)
Valor de la PMaP y Precio del Insumo P(X) 0.0150
$/g
14
0.0100 0.0050 0.0000 0
1
2
3 4 Semanas
5
6
7
Asignación óptima de un insumo El óptimo económico se encuentra antes de finalizar la sexta semana de engorde (día 42), es decir, se esta incurriendo en pérdidas por no haber detenido la fase de engorde antes de que el VPMa llegase a un nivel inferior ($0.0050/gr por gramo de pollo producido) ya que el costo del alimento concentrado es de $0.006/gr. La pérdida económica en que se incurre es del orden de $0.001/gr de pollo vivo Aproximadamente el día 40 pudiese ser el mas probable para detener la fase de Economía de la Producción. Maestría en Manejo yes Explotación engorde y enviar los pollos al matadero, decir, cuando todavía la VPMa esté por 27/02/2014 de Agrosistemas de la Caña de Azúcar encima del precio del insumo P(X), sin embargo, esto es solo una hipótesis, que habrá que confirmarla en un futuro experimento.
La producción de chile serrano en cierta finca se comporta de la siguiente manera Y=2.088X0.0253X2, donde Y está en ton/ha y X es la cantidad de fertilizantes. El fertilizante utilizado en fosfonitrato con un precio de $3.8/kg y la tonelada de chile se vende por parte de lo productores en $ 8000.00. Hacer el análisis económico completo como una función de producción con un insumo variable, incluyendo: a) Función de producción en tabla y gráfica b) Calcular producción promedio, producción marginal y la elasticidad de producción c) Presentar la gráfica de producción promedio y producción marginal indicando que etapas de la producción se presentan d) Trazar la gráfica de relación Valor de Producción Marginal (VPMa) y el costro del insumo P(X) y determinar el punto donde hay una mayor ganancia de manera gráfica y en la tabla de datos.
Sugerencia usar valores de X de 5 en 5 hasta 60……
X
Y
0 5 10 15 20 25 30 35 40 45 50 55 60
9.81 18.35 25.63 31.64 36.39 39.87 42.09 43.04 42.73 41.15 38.31 34.20
Producción PMaP = Promedio DY/D X (Y/X)
1.9615 1.835 1.7085 1.582 1.4555 1.329 1.2025 1.076 0.9495 0.823 0.6965 0.57
2.088 1.835 1.582 1.329 1.076 0.823 0.57 0.317 0.064 -0.189 -0.442 -0.695 -0.948
Elasticidad
VPMaP
P(X)
0.9355085 0.8621253 0.7778753 0.6801517 0.5654414 0.4288939 0.2636175 0.0594796 -0.199052 -0.53706 -0.997846 -1.663158
16704 14680 12656 10632 8608 6584 4560 2536 512 -1512 -3536 -5560 -7584
3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8
Asignación óptima con un insumo variable Demanda de factores 19 • Lo que se demanda en realidad no son los factores productivos sino sus servicios. El precio que están dispuestos a pagar las empresas por los factores de producción depende de dos cosas: •
Su productividad física, es decir, su utilidad en el proceso productivo, su aportación al bien final.
•
El precio que tiene este bien final en el mercado.
Leyes de Marshall. Explican gran parte de las razones por las que unos factores son retribuidos y en qué proporción en comparación con otros. •
Primera. Sustituibilidad. La elasticidad es mayor cuanto más fácilmente sea sustituible en el proceso productivo un factor por otro.
•
Segunda. Al subir el precio del factor, el precio del producto final también subirá. Si la demanda del producto se contrae, la demanda del factor también se contraerá.
•
Tercera. La elasticidad de la demanda de un factor depende de la elasticidad de la oferta de los otros factores que intervienen en el proceso.
•
Cuarta. La demanda del factor será más inelástica cuanto menor sea su coste en comparación con el total de la producción.
Ejercicio Resuelto No. 4: A continuación se presentará un ejemplo aplicado a la ganadería de leche, utilizando 2 insumos y manteniendo una producción constante de 10.5 lt. En la tabla se presentan las combinaciones de alimentos que producen 10.5 lts de leche con 4.0% de grasa. Determinar: a) La tasa marginal de sustitución. b) La gráfica de isoproducto con las líneas isocuanta e isocosto, ¿qué tipo de sustitución tenemos? c) El factor de sustitución y decidir que tipo de rendimiento a escala se obtiene. d) La combinación de costos de insumo, el ingreso bruto, la ganancia y la ganancia máxima. Con la ganancia máxima quedaran asignados de manera óptima los insumos.
Asignación óptima de dos insumos variables Datos:
22
Combinaciones
Alfalfa (kg)
Maíz (kg)
Precios Actuales ($/kg)
1
3.6
5.9
Maíz
2.7255
2
4.5
4.3
Alfalfa
0.77
3
5.5
3.2
Leche
5.00
4
6.4
2.6
5
7.3
2.1
6
8.2
1.8
7
9.1
1.5
8
10
1.3
9
10.9
1.2
10
11.8
1
11
12.7
0.9
12
13.6
0.8
Asignación óptima de dos insumos variables Procedimiento: a) La tasa marginal de sustitución de insumos (TMSI) Combinaciones
X1
X2
1
3.6
5.9
2
4.5
4.3
3
5.5
3.2
4
6.4
2.6
5
7.3
2.1
6
8.2
1.8
7
9.1
1.5
8
10
1.3
9
10.9
1.2
10
11.8
1
11
12.7
0.9
12
13.6
0.8
TMSI = DX2/DX1
23
Asignación óptima de dos insumos variables Procedimiento: a) La tasa marginal de sustitución de insumos (TMSI)
24
TMSI = DX2/DX1
Combinaciones
X1
X2
1
3.6
5.9
2
4.5
4.3
-1.778
3
5.5
3.2
-1.100
4
6.4
2.6
-0.667
5
7.3
2.1
-0.556
6
8.2
1.8
-0.333
7
9.1
1.5
-0.333
8
10
1.3
-0.222
9
10.9
1.2
-0.111
10
11.8
1
-0.222
11
12.7
0.9
-0.111
12
13.6
0.8
-0.111
Asignación óptima de dos insumos variables Procedimiento: a) La tasa marginal de sustitución de insumos (TMSI) TMSI = DX2/DX1
Combinaciones
X1
X2
1
3.6
5.9
2
4.5
4.3
-1.778
3
5.5
3.2
-1.100
4
6.4
2.6
-0.667
5
7.3
2.1
-0.556
6
8.2
1.8
-0.333
7
9.1
1.5
-0.333
8
10
1.3
-0.222
9
10.9
1.2
-0.111
10
11.8
1
-0.222
11
12.7
0.9
-0.111
12
13.6
0.8
XXX
-0.111
25
Asignación óptima de dos insumos variables b) Primeramente trazaremos la línea de Isocosto 26
Curva de Isoproducto 7 6
X2
5 4 3 2 1 0 0
2
4
6
8
Economía de la Producción. Maestría en Manejo y Explotación X1 de Agrosistemas de la Caña de Azúcar
10
12 27/02/2014
14
16
Asignación óptima de dos insumos variables b) Primeramente trazaremos la línea de Isocosto 27
Curva de Isoproducto 7 6
X2
5 4 3 2 1 0 0
2
4
6
8
10
12
14
16
X1
La curva nos indica que tenemos una sustitución imperfecta de los recursos, es decir se puede sustituir en diferentes proporciones
Para poder trazar la línea de Isocosto, es necesario determinar su pendiente, la pendiente de la linea de Isocostos es:
P(X 1 ) 0.77 0.282 P(X 2 ) 2.7255
Para trazar la línea de Isocostos usaremos la ecuación de la línea recta, pues conocemos la pendiente m, y la línea de isocostos siempre va a P(X 1 ) cruzar el punto correspondiente a TMSI , que es el P(X 2 ) punto. (X1 = 9.46, X2 = 1.42) Ecuación de línea recta:
X 2.Iso cos to X 2 , Equilibrio m X 1.Iso cos to X 1, Equilibrio Para cada punto de la línea de isocosto, despejamos X2, Isocosto, mientras que usaremos cada X1 = X1,isocosto
X 2.Iso costo mX 1.Iso costo X 1, Equilibrio X 2, Equilibrio
X 2.Iso costo 0.282 X 1 9.5 1.4 TMSI = DX2/DX1
Combinaciones
X1
X2
1
3.6
5.9
2
4.5
4.3
-1.778
3
5.5
3.2
-1.100
4
6.4
2.6
-0.667
5
7.3
2.1
-0.556
6
8.2
1.8
-0.333
7
9.1
1.5
-0.333
Punto de Equilibrio
9.5
1.4
-0.286
8
10
1.3
-0.222
9
10.9
1.2
-0.111
10
11.8
1
-0.222
11
12.7
0.9
-0.111
12
13.6
0.8
-0.111
X2, isocosto
X 2.Iso costo 2.86 X 1 9.4 1.4 Combinaciones
X1
TMSI = DX2/DX1
X2
X2, isocosto
1
3.6
5.9
2
6
4.5 5.5 6.4 7.3 8.2
4.3 3.2 2.6 2.1 1.8
-
1.778 1.100 0.667 0.556 0.333
3.1 2.8 2.5 2.3 2.0 1.8
7
9.1
1.5 -
0.333
1.5
Punto de Equilibrio
9.5
1.4
10.0 10.9 11.8 12.7 13.6
1.3 1.2 1.0 0.9 0.8
0.282 0.222 0.111 0.222 0.111 0.111
1.4 1.3 1.0 0.8 0.5 0.3
3 4 5
8 9
10 11 12
-
Asignación óptima de dos insumos variables Graficando los datos de la tabla: 31
Asignación óptima de dos insumos variables Graficando los datos de la tabla: 32
c) Cálculo del factor de sustitución y tipo de rendimiento a escala que se obtiene. En la gráfica de Isocosto se observan 5 puntos que se traslapan, es la zona de equilibrio, es una zona donde los gastos se mantendrán estables. La elasticidad o factor de sustitución se calculara para los puntos por arriba y por abajo del equilibrio
Asignación óptima de dos insumos variables Combinaciones
X1
TMSI = DX2/DX1
X2
X2, isocosto
1
3.6
5.9
2
6
4.5 5.5 6.4 7.3 8.2
4.3 3.2 2.6 2.1 1.8
-
1.778 1.100 0.667 0.556 0.333
3.1 2.8 2.5 2.3 2.0 1.8
7
9.1
1.5 -
0.333
1.5
Punto de Equilibrio
9.5
1.4
10.0 10.9 11.8 12.7 13.6
1.3 1.2 1.0 0.9 0.8
0.282 0.222 0.111 0.222 0.111 0.111
1.4 1.3 1.0 0.8 0.5 0.3
3 4 5
8 9
10 11 12
-
Asignación óptima de dos insumos variables •
Por arriba del equilibrio tenemos el punto 4, donde, X1 = 6.4 y X2 = 2.6, en ese punto calcularemos el factor de sustitución: 34
eSI X1X 2
DX1 X1 DX 2 X 2 DTMSI X1X 2 TMSI X1X 2
Combinaciones
X1
X2
TMSI = DX2/DX1
X2, isocosto
4
6.4
2.6
-0.667
2.263
5
7.3
2.1
-0.556
2.009
6
8.2
1.8
-0.333
1.754
Punto de Equilibrio
9.1
1.5
-0.333
1.500
8
10
1.3
-0.222
1.246
9
10.9
1.2
-0.111
0.991
Asignación óptima de dos insumos variables •
Por arriba del equilibrio tenemos el punto 4, donde, X1 = 6.4 y X2 = 2.6, en ese punto calcularemos el factor de sustitución:
eSI X1 X 2
Combinaciones
DX 1 X 1 8.2 7.3 7.3 DX X 2 1.8 2.1 2.1 2 26 DTMSI X1 X 2 .333 (.556) .556 TMSI X1 X 2
X1
TMSI = DX2/DX1
X2
6
7.3 8.2
7
9.1
2.1 1.8 1.5 -
Punto de Equilibrio
9.5
1.4
5
8
9 10
10.0 10.9 11.8
1.3 1.2 1.0 -
35
X2, isocosto
0.556 0.333
2.0 1.8
0.333
1.5
0.282 0.222 0.111 0.222
1.4 1.3 1.0 0.8
Asignación óptima de dos insumos variables •
Por abajo del equilibrio tenemos el punto 9, donde, X1 = 10.9 y X2 = 1.2, en ese punto calcularemos el factor de sustitución:
11.8 10.9 10.9 2.6 1.0 1.2 81.75 .222 (.111) .222
36
Combinaciones
X1
X2
TMSI = DX2/DX1
X2, isocosto
4
6.4
2.6
-0.667
2.263
6
8.2
7
9.1
1.8 1.5 -
Punto de Equilibrio
9.5
1.4
8
9 10
10.0 10.9 11.8
1.3 1.2 1.0 -
0.333
1.8
0.333
1.5
0.282 0.222 0.111 0.222
1.4 1.3 1.0 0.8
Asignación óptima de dos insumos variables d) La combinación de costos de insumos variables esta definido por la siguiente expresión: 37
CV P ( X 1 ) * X 1 P ( X 2 ) * X 2 Y conocemos P(X1) = $2.72/kg y P(X2) = $0.77/kg • El ingreso bruto es el precio del producto total al cual se vende el artículo, en este caso: IB = P(Y)*Y = $5.00*10.5 =$52.5 •
La ganancia o margen bruto va a estar definido por: MB = IB-CV
•
Podemos observar los valores de estos dos parámetros en la siguiente tabla:
Podemos observar los valores de estos dos parámetros en la siguiente tabla: Combinaciones
X1
CV P(X 1 ) * X 1 P(X 2 ) * X 2
X2
1
3.6
5.9
2
4.5
4.3
3
5.5
3.2
4
6.4
2.6
5
7.3
2.1
6
8.2
1.8
7
9.1
1.5
8
9.5
1.4
9
10.0
1.3
10
10.9
1.2
11
11.8
1.0
12
12.7
0.9
Ganancia o Margen Bruto MB = IB-CV = $52.50
Podemos observar los valores de estos dos parámetros en la siguiente tabla:
Ganancia o Margen Bruto
Combinaciones
CV P ( X 1 ) * X 1 P ( X 2 ) * X 2
1
18.85
33.65
2
15.18
37.32
3
12.96
39.54
4
12.01
40.49
5
11.34
41.16
6
11.22
41.28
7
11.10
41.40
8
11.24
41.26
9
11.66
40.84
10
11.81
40.69
11
12.23
40.27
12
12.65
39.85
MB = IB-CV39
Máxima Ganancia
Ejercicio
En la producción de chile se usa usan como nutrientes ácido fosfórico y fosfonitrato, cuyas presentación son en paquete de 1.6 kg a un precio de 0.86 USD y bulto de 50 kg de 16 USD respectivamente. Para una producción de 40 ton/ha se conocen los datos de la curva de isoproducto. Fosfonitrato (kg) ácido fosfórico (kg) 93.0
12.0
85.0
13.0
75.0
14.0
70.0
17.0
71.0
18.0
75.0
20.0
85.0
21.0
93.0
22.0
a)
La tasa marginal de sustitución.
b)
La gráfica de isoproducto con las líneas isocuanta e isocosto, ¿qué tipo de sustitución tenemos?
c)
El factor de sustitución y decidir que tipo de rendimiento a escala se obtiene.
d)
La combinación de costos de insumo, el ingreso bruto, la ganancia y la ganancia máxima. Con la ganancia máxima quedaran asignados de manera óptima los insumos.