Aplicaciones de la integral indefinida

Aplicaciones_de_la_integral.nb 1 Aplicaciones de la integral indefinida Práctica de Cálculo, E.U.A.T,Grupos 1ºA y 1ºB, 2005 Esta práctica muestra có

5 downloads 188 Views 50KB Size

Recommend Stories


UNIDAD 3: INTEGRAL INDEFINIDA
UNIDAD 3: INTEGRAL INDEFINIDA UNIDAD 3: INTEGRAL INDEFINIDA ÍNDICE DE LA UNIDAD 1.- INTRODUCCIÓN. ...................................................

Tema 10. La integral indefinida
Matemáticas II (Bachillerato de Ciencias). Análisis: Integral Indefinida 229 Tema 10. La integral indefinida 1. Concepto de integral indefinida La d

Aplicaciones de la integral
CAP´I TULO 1 Aplicaciones de la integral 3.1 Volumen de solidos ´ Las ideas que dieron origen a la integral en el c´alculo de a´ reas (hacer una par

Aplicaciones de la Integral
Aplicaciones de la Integral Cálculo 16/03/2014 Prof. José G. Rodríguez Ahumada 1 de 20 Sea f, g dos funciones tal que para todo valor x en [a, b

LA INTEGRAL DEFINIDA. APLICACIONES
13 LA INTEGRAL DEFINIDA. APLICACIONES Página 363 REFLEXIONA Y RESUELVE Dos trenes Un Talgo y un tren de mercancías salen de la misma estación, por l

Story Transcript

Aplicaciones_de_la_integral.nb

1

Aplicaciones de la integral indefinida Práctica de Cálculo, E.U.A.T,Grupos 1ºA y 1ºB, 2005 Esta práctica muestra cómo calcular algunas áreas y volúmenes utilizando integrales. En cada caso daremos fórmulas para calcular el área o el volumen del que se trate; la justificación de estas fórmulas se ha visto (o se verá pronto) en la clase de teoría. Para dibujar algunas de las funciones que aparecen en la práctica usaremos algunas órdenes gráficas nuevas: FilledPlot y ParametricPlot3D. Estas órdenes no son necesarias para los cálculos que haremos, pero son muy útiles para mostrar gráficamente superficies o volúmenes. En algunas de las órdenes siguientes no se muestra el dibujo de salida, pero podéis verlo ejecutando las órdenes en Mathematica.

à Área de una región plana limitada por dos curvas Ÿ Área entre una función y el eje horizontal Como sabéis, el área entre la gráfica de una función positiva y el eje horizontal en una cierta región es la integral indefinida de dicha función en esa región. Si la función no es siempre positiva, la integral indefinida cuenta el área "con signo": positiva si queda por encima del eje y negativa si queda por debajo. Entonces, para calcular el área entre la gráfica de una función y el eje horizontal lo que hacemos es calcular la integral del valor absoluto de dicha función.

El área entre la gráfica de una función y el eje horizontal en un intervalo es la integral del valor absoluto de la función en ese intervalo. Por ejemplo: calculemos el área bajo la siguiente función en el intervalo [1,2]: In[1]:= f@x_D := x ^ 2 - 1  2

In[2]:= NIntegrate@Abs@f@xDD, 8x, 1, 2

Get in touch

Social

© Copyright 2013 - 2024 MYDOKUMENT.COM - All rights reserved.