CALCULO INTEGRAL 2AMB

INSTITUTO TECNOLÓGICO SUPERIOR DEL SUR DEL ESTADO DE YUCATÁN Organismo Público Descentralizado del Gobierno del Estado de Yucatán CALCULO INTEGRAL 2A

11 downloads 130 Views 221KB Size

Recommend Stories


CALCULO integral. sucesiones y series de funciones
y y x y y x y y x y x y x y y y CALCULO integral. x y sucesiones y series x y x y x y x y y y de funciones x y x x x x x y x

GUIA DE EJERCICIOS PARA CALCULO DIFERENCIAL E INTEGRAL I
GUIA DE EJERCICIOS PARA CALCULO DIFERENCIAL E INTEGRAL I ITAM, Agosto 1998. G. Grabisnky 1 INTRODUCCION La siguiente lista de ejercicios constit

MATEMÁTICAS V: CALCULO DIFERENCIAL E INTEGRAL DATOS GENERALES
MATEMÁTICAS V: CALCULO DIFERENCIAL E INTEGRAL DATOS GENERALES Semestre: Quinto Horas por semestre: 80 horas Horas teoría/sem: 3 Asignatura: Cálculo D

Story Transcript

INSTITUTO TECNOLÓGICO SUPERIOR DEL SUR DEL ESTADO DE YUCATÁN Organismo Público Descentralizado del Gobierno del Estado de Yucatán

CALCULO INTEGRAL 2AMB Horario: Martes: 9:30 a 11:30 Jueves: 8:30 a 9:30 Viernes : 9:30 a 11:30

IQ. Carolina Lol-Be Montejo Peraza. 4-febrero- 2014 www.itsyucatan.edu.mx Carretera Muna-Felipe Carrillo Puerto, tramo Oxkutzcab-Akil Km 41+400 Oxkutzcab, Yucatán, México C.P. 97880 Email: [email protected] Tel/Fax: 01 (997) 9750909 / (997) 9750910

Competencias previas —  Usar eficientemente la calculadora, respetando la jerarquía de

operadores. —  Evaluar funciones trascendentes. —  Despejar el argumento de una función. —  Dominar el álgebra de funciones racionales, asi como de expresiones con potencias y radicales. —  Identificar, graficar y derivar funciones trigonométricas y sus inversas. —  Manejar identidades trigonométricas. —  Identificar, graficar y derivar funciones exponenciales y logarítmicas.

1. CARACTERIZACIÓN DE LA ASIGNATURA  

Esta asignatura contribuye a desarrollar un pensamiento lógico, heurístico y algorítmico al modelar fenómenos y resolver problemas en los que interviene la variación. Hay una diversidad de problemas en la ingeniería que son modelados y resueltos a través de una integral, por lo que resulta importante que el ingeniero domine el Cálculo integral.   El problema esencial del Cálculo integral es calcular áreas de superficies, particularmente el área bajo la gráfica de una función; de manera más sencilla, sumar áreas de rectángulos. Varios conceptos son descritos como el producto de dos variables; por ejemplo: trabajo, como fuerza por distancia; fuerza como el producto de la presión por el área; masa como densidad por volumen. Si cada uno de los factores que componen el producto se asocian con cada uno de los ejes coordenados; el producto se asocia en el plano con una área que puede ser calculada a través de una integral.   En general, si se define un plano p q, entonces la integral nos permite calcular áreas en este plano, las unidades del área resultante están definidas por las unidades de los factores  

2. OBJETIVO(S) GENERAL(ES) DEL CURSO. (Competencias específicas a desarrollar)  

• Contextualizar el concepto de Integral.

 

• Discernir cuál método puede ser más adecuado para resolver una integral dada y resolverla usándolo.

 

• Resolver problemas de cálculo de áreas, centroides, longitud de arco y volúmenes de sólidos de revolución.   • Reconocer el potencial del Cálculo integral en la ingeniería.  

N° de la Unidad  

Unidad

I  

Temática  

Competencia Específica de la Unidad  

Desarrollo de Competencias Genéricas  

TEOREMA FUNDAMENTAL DEL CÁLCULO  

Criterios de Evaluación de la Unidad   Saber (45%)  

•  •  •  •  • Contextualizar el concepto de Integral definida.   • Visualizar la relación entre cálculo diferencial y el cálculo integral.   • Calcular integrales definidas.  

•  •  •  •  • 

Pensar lógica, algorítmica, heurística, analítica y sintéticamente.   Argumentar con contundencia y precisión.   Procesar e interpretar datos.   Representar e interpretar conceptos en diferentes formas: numérica, geométrica, algebraica, trascendente y verbal.   Comunicar ideas en el lenguaje matemático en forma oral y escrita.   Reconocer conceptos o principios generales e integradores.   Establecer generalizaciones.   Potenciar las habilidades para el uso de tecnologías de la información.   Resolver problemas.  

Examen escrito (45%)  

Saber Hacer (45%)  

Investigaciones (plataforma) (5% )   Ejercicios (20%)   Portafolio de Evidencias(Escrito y en plataforma) (15%)   Resumen (5% )  

Saber Ser (10%)  

Puntualidad y asistencia (5%)   Conducta y disciplina dentro y fuera del salón (5%)  

No. de Sesión  

1  

Tema/Subtema   a)  b)  c)  d)  e) 

Presentación del Docente   Presentación y expectativas de los estudiantes en relación al curso   Presentación de la Planeación didáctica   Criterios de evaluación y asistencia   Aplicación de la evaluación diagnóstico  

Unidad I. Teorema Fundamental del cálculo.   2  

1.  2. 

Medición aproximada de figuras amorfas.   Notación sumatoria  

3  

1.3 Suma de Riemann  

4  

1.4 Definición de integral definida   1.5 Teorema de existencia  

5  

1.6 Propiedades de la integral definida  

6  

1.7 Función primitiva  

7  

1.8 Teorema Fundamental del cálculo  

8  

1.8 Teorema Fundamental del cálculo  

7  

1.8 Teorema Fundamental del cálculo  

8  

1.8 Teorema Fundamental del cálculo    

9  

1.9 Cálculo de integrales definidas  

 

10  

1.9 Cálculo de integrales definidas  

 

11y 12  

13  

1.10 Integrales impropias  

Examen correspondiente al Parcial I  

Fuentes de Información  

Leithold, Louis. El cálculo con Geometría análitica, Editorial Oxford University.   Purcell, Edwin J. Cálculo. Editorial Pearson, 2007.   Ayres, Frank. Cálculo, McGraw-Hill, 2005.  

Apoyos Didácticos   Lap top   Cañón   Pintarrón   Material Didáctico.   Plataforma : www.itssy.edu20.org  

N° de la Unidad  

II  

Unidad

INTEGRALES INDEFINIDAS Y MÉTODOS DE

Temática  

Competencia Específica de la Unidad  

Desarrollo de Competencias Genéricas  

INTEGRACIÓN  

Criterios de Evaluación de la Unidad   Saber (45%)  

•  •  •  •  • Discernir cuál método puede ser más adecuado para resolver una integral dada y resolverla usándolo.   • Determinar una función primitiva  

•  •  •  •  • 

Pensar lógica, algorítmica, heurística, analítica y sintéticamente.   Argumentar con contundencia y precisión.   Procesar e interpretar datos.   Representar e interpretar conceptos en diferentes formas: numérica, geométrica, algebraica, trascendente y verbal.   Comunicar ideas en el lenguaje matemático en forma oral y escrita.   Reconocer conceptos o principios generales e integradores.   Establecer generalizaciones.   Potenciar las habilidades para el uso de tecnologías de la información.   Resolver problemas.  

Examen escrito (45%)  

Saber Hacer (45%)  

Ejercicios (25%)   Portafolio de Evidencias (20%)  

Saber Ser (10%)  

Puntualidad y asistencia (5%)   Participación (5%)  

No. de Sesión  

13  

14  

15  

Tema/Subtema   2. Integral indefinida y métodos de integración.   2.1 Definición de integral indefinida.   2.2 Propiedades de integral indefinida   2.2 Propiedades de integral indefinida   2.3 Calculo de integrales indefinidas   2.3.1 Directas   2.3.1 Directas  

16  

2.3.2 Con cambio de variable.  

17  

2.3.2 Con cambio de variable.  

18  

2.3.3 Trigonométricas.  

19  

2.3.3 Trigonométricas.  

20  

2.3.3 Trigonométricas.  

21  

2.3.4 Por partes y trigonometricas  

22  

2.3.4 Por partes.  

23  

2.3.4 Por partes.  

24  

2.3.5 Por sustitución trigonométrica y partes  

25  

2.3.5 Por sustitución trigonométrica.  

26  

2.3.6 Por fracciones parciales.  

27  

2.3.6 Por fracciones parciales.  

28  

2.3.6 Por fracciones parciales.  

29  

Examen correspondiente al Parcial II  

N° de la Unidad  

Unidad Temática  

III  

Competencia Específica de la

Desarrollo de Competencias

Unidad   • 

•  •  •  • Interpretar enunciados de problemas para construir la función que al ser integrada da la solución.   • Resolver problemas de cálculo de áreas, centroides, longitud de curvas y volúmenes de sólidos de revolución.   • Reconocer el potencial del Cálculo integral en la ingeniería  

APLICACIONES DE LA INTEGRAL  

• 

• 

•  • 

• 

Genéricas   Pensar lógica, algorítmica, heurística, analítica y sintéticamente.   Argumentar con contundencia y precisión.   Procesar e interpretar datos.   Representar e interpretar conceptos en diferentes formas: numérica, geométrica, algebraica, trascendente y verbal.   Comunicar ideas en el lenguaje matemático en forma oral y escrita.   Reconocer conceptos o principios generales e integradores.   Establecer generalizaciones.   Potenciar las habilidades para el uso de tecnologías de la información.   Resolver problemas.  

Criterios de Evaluación de la Unidad   Saber (45%)  

Saber Hacer (45%)  

Saber Ser (10%)  

Examen escrito (45%)   Investigaciones (5% )   Ejercicios (25%)   Portafolio de Evidencias (15%)   Resumen (5% )  

Puntualidad y asistencia (5%)   Conducta y disciplina dentro y fuera del salón (5%)  

No. de Sesión  

Tema/Subtema  

30  

3. Aplicaciones de la integral.   3.1 Áreas   3.1.1 Área bajo la gráfica de una función.  

31  

3.1.2 Área entre las gráficas de las funciones  

32  

3.1.2 Área entre las gráficas de las funciones  

33  

3.2 Longitud de curvas  

34  

3.3 Cálculo de volúmenes de sólidos de revolución.  

35  

3.3 Cálculo de volúmenes de sólidos de revolución  

36  

3.4 Cálculo de centroides  

37  

3.5 Otras aplicaciones  

N° de la Unidad  

Unidad Temática  

IV  

Competencia Específica de

Desarrollo de Competencias

la Unidad   • 

• 

• Identificar series finitas e infinitas en distintos contextos   • Determinar la convergencia de una serie infinita.   • Usar el teorema de Taylor para representar una función en serie de potencias y aplicar esta representación para calcular la integral de la función.  

SERIES  

•  • 

• 

• 

•  • 

• 

Genéricas   Pensar lógica, algorítmica, heurística, analítica y sintéticamente.   Argumentar con contundencia y precisión.   Procesar e interpretar datos.   Representar e interpretar conceptos en diferentes formas: numérica, geométrica, algebraica, trascendente y verbal.   Comunicar ideas en el lenguaje matemático en forma oral y escrita.   Reconocer conceptos o principios generales e integradores.   Establecer generalizaciones.   Potenciar las habilidades para el uso de tecnologías de la información.   Resolver problemas.  

Criterios de Evaluación de la Unidad   Saber (45%)  

Saber Hacer (45%)  

Saber Ser (10%)  

Exposición y reporte (45%)   Ejercicios (20%)   Portafolio de Evidencias (20%)   Investigación (Libreta y plataforma)(5%)  

Puntualidad y asistencia (5%)   Participación (5%)  

No. de Sesión  

Fecha   Real  

Tema/Subtema  

38  

4. Series   4.1 Definición de serie   4.1.1 Finita   4.1.2 Infinita  

39  

4.2 Serie numérica y convergencia Prueba de la razón (criterio de D’Alembert) y Prueba de la raíz (criterio de Cauchy).  

40  

4.3 Serie de potencias  

41  

4.4 Radio de convergencia   4.5 Serie de Taylor  

42  

4.6 Representación de funciones mediante la serie de Taylor.   4.7 Cálculo de integrales de funciones expresadas como serie de Taylor.  

43  

Examen correspondiente al Parcial III  

Fuentes de Información   Leithold, Louis. El cálculo con Geometría análitica, Editorial Oxford University.   Purcell, Edwin J. Cálculo. Editorial Pearson, 2007.   Ayres, Frank. Cálculo, McGraw-Hill, 2005.  

Apoyos Didácticos   Lap top   Cañón   Pintarrón   Material Didáctico. Graficadores(Derive,Geogebra,etc.) Plataforma : www.itssy.edu20.org  

Parcial a Presentar

Fechas Programadas.

1 Parcial ( Unidad 1)

4 de Marzo

2 Parcial ( Unidad 2 )

11 de Abril

3 Parcial

( Unidad 3 y 4 )

29 de Mayo

CLMP.

Get in touch

Social

© Copyright 2013 - 2024 MYDOKUMENT.COM - All rights reserved.