MAGISTRAL 3. Magnitudes proporcionales Regla de tres simple Porcentaje

MAGISTRAL 3 Magnitudes proporcionales Regla de tres simple Porcentaje CONTENIDO  Proporcionalidad Directa entre dos cantidades.  Proporcionalid

4 downloads 369 Views 457KB Size

Story Transcript

MAGISTRAL 3

Magnitudes proporcionales Regla de tres simple Porcentaje

CONTENIDO  Proporcionalidad

Directa entre dos

cantidades.  Proporcionalidad Inversa entre dos cantidades.  Regla de tres simple  Porcentaje

OBJETIVOS  Interpretar

los conceptos de proporcionalidad directa e inversa y su relación con la regla de tres simple y los porcentajes.  Manejar los conceptos de proporcionalidad directa e inversa, regla de tres simple y porcentajes en la resolución de problemas de su entorno.  Valorar la importancia de las proporcionalidad, la regla de tres simple y el cálculo de porcentaje en la resolución de problemas.

¿PORQUÉ NOS INTERESA LA SABER SOBRE LA PROPORCIONALIDAD DE CANTIDADES?

¿Qué es una proporción? ¿Cuando tenemos proporcionalidad directa entre dos cantidades? ¿Cuando tenemos proporcionalidad inversa entre dos cantidades? ¿Cómo se calcula una Regla de tres? ¿Qué es un porcentaje?

PROPORCIONALIDAD Tales de Mileto, utilizó la proporcionalidad para calcular la altura de la pirámide.

RAZÓN ENTRE DOS CANTIDADES  Una

Razón es una comparación entre dos cantidades de la misma naturaleza y de las mismas unidades. Generalmente, una razón se escribe como una fracción simplificada.  Como las unidades de medida son las mismas no es necesario escribirlas.  Ejemplo : La razón entre el ancho y el largo de un rectángulo es de 5 cm por 8 cm. =>

ó

PROPORCIÓN  Dos

cantidades son proporcionales, si cada término de una segunda cantidad se obtiene multiplicando por un mismo número, el término correspondiente de la primera cantidad. Este número es llamado coeficiente de proporcionalidad.

 Una

proporción es una igualdad entre dos razones.

 Ejemplo:

=

el coeficiente de proporcionalidad

es 2, ya 6=3*2 y 10=5*2.

PROPIEDADES DE LAS PROPORCIONES En una proporción siempre el producto de los medios es igual al producto de los extremos, este producto se conoce como producto cruz

En una proporción podemos obtener otras proporciones intercambiando los medios o intercambiando los extremos.

PROPIEDAD ADITIVA En una proporción la suma de numeradores es a la suma de denominadores.

Ejemplo:

los los

PROPORCIONALIDAD DIRECTA  Decimos

que dos cantidades son directamente proporcional, si cuando una de ellas es multiplicada por 2,3,4 la otra es igualmente multiplicada 2,3,4 ; este número recibe el nombre de constante de proporcionalidad  Ejemplo: Venta de metros de tela. Al aumentar la compra de metros de tela el costo aumenta en esa proporción. Tela(metros) Costo($)

10 90

15 135

20 180

PROPORCIONALIDAD INVERSA  Decimos

que dos cantidades son inversamente proporcional, si cuando una de ellas es multiplicada por 2,3,4 la otra es igualmente dividida por 2,3,4  Ejemplo: La velocidad de un vehículo y la duración del trayecto. Cuanto mayor es la velocidad en tiempo disminuye en esa proporción. Velocidad(km/h) Tiempo (horas)

40 4

80 2

160 1

¿PREGUNTA DE CONTROL?

¿Cómo reconocer sin una proporción es Directa o Inversa? Directa: Si una cantidad aumenta la otra también y el cociente entre sus valores es una constante. Variable 1 Variable 2 Constane

15 50 0,3

30 100 0,3

15 4 60

30 2 60

60 200 0,3

Inversa: Si una cantidad aumenta la otra disminuye y el producto entre sus valores es una constante. Variable 1 Variable 2 Constane

60 1 60

REGLA DE TRES La regla de tres se refiere a la proporcionalidad y la teoría de las proporciones fundadas por los griegos y presentada en los libros V y VII de los Elementos de Euclides (siglo III a C).  Una de las propiedades fundamentales de las proporciones, demostrada por Euclides en el libro VII es que si cuatro números están en proporción, el producto de los extremos es igual al producto de los medios.  La resolución de la regla de tres planteada por el método antiguo se escribía 7: 12 :: 25: x, ahora escribiríamos ahora en forma de fracción como 

CUARTA PROPORCIONAL La cuarta proporcional es el cuarto número buscado en una proporción donde se conocen los otros tres. El cuarto número se obtiene por el "producto cruz“ o regla de tres.  Por ejemplo si tenemos 



De donde se obtiene



Despejando



A veces es más práctico usar una tabla como sigue: 6 8 12

x

EJEMPLOS DE PROPORCIONALIDAD RESUELTOS POR REGLA DE TRES Ejemplo 1:Un fabricante factura 350 sillas idénticas a un precio de C$5600. ¿Cuál sería el precio de 1 250 de estas sillas?  Solución: Primero expresamos los datos en la siguiente tabla, la proporcionalidad es directa 

Conozco No sillas Precio

Desconozco 350 1250 5600 x



Resolviendo para la incógnita tenemos:



Por lo tanto el precio sería 20,000

PROPORCIONALIDAD INVERSA Ejemplo 2: Tres trabajadores tomaron 30 días para construir una casa. ¿Cuántos días habrían tomado 5 trabajadores para construir la misma casa en las mismas condiciones?  Solución: Presentamos los datos en la tabla Conozco Desconozco siguiente: No Obreros 3 5 

No de días





30

x

La proporcionalidad es inversa, por lo tanto el valor de la incógnita es 5x=30*3 y así Es decir le tomará a los 5 obreros 18 días construir la misma casa.

TANTO PORCIENTO O PORCENTAJE  Podemos

hablar de las proporciones expresando el valor de la razón bajo la forma de un porcentaje, por ejemplo como la proporción de candidatos electos en un concurso es de 67%, esto significa que de los 100 candidatos 67 fueron electos.

LEA CON DETENIMIENTO Y TRATE DE ENTENDERLO  Se

dice que “el 60% de los estudiantes de esta conferencia magistral son mujeres”, se está expresando que de cada 100 estudiantes, 60 son mujeres.

 Una

cámara fotográfica “SONY” tiene un precio de 3,500$ pero por aproximarse las vacaciones de semana santa, hay un descuento del 25% ¿Cuánto se pagará por el artículo?

SOLUCIÓN DEL EJERCICIO DE LA PÁGINA ANTERIOR  Precio

del artículo: $ 3,500

 Descuento  3500

x 0.25 = $875

 $3500

Precio

del artículo: 25% (0.25)

- $875 = $2625

Descuento

Precio a pagar por el artículo

PROBLEMAS SOBRE PORCENTAJES  Hace

aproximadamente un año el galón de gasolina súper costaba 28 córdobas. A un año de distancia se ha incrementado en un 8% ¿Cuál es el precio actual del galón de gasolina?

2

8

X

1

.

00000 00

0

8

=

30.24

1.Baldor

Aurelio.

ARITMÉTICA.

Publicaciones

CULTURAL decima séptima reimpresión. 2002.

2.Jara Víctor. MATEMÁTICA. Prueba de Selección Universitaria. Facultad de Ciencias Universidad de Chile. 2008

3. Colectivo

de autores. LA BIBLIA DE LAS

MATEMATICAS. Editorial Letrarte. 2000.

Get in touch

Social

© Copyright 2013 - 2024 MYDOKUMENT.COM - All rights reserved.