TEMA 2 ESTEREOQUÍMICA

TEMA 2  ESTEREOQUÍMICA La estereoquímica es el estudio de las moléculas en tres dimensiones. Quiralidad vs Aquiralidad Imagen especular original M
Author:  Ana Ponce Escobar

32 downloads 60 Views 3MB Size

Recommend Stories


TEMA 2) ORACIONES CAUSALES
14/10/2013 TEMA 2) ORACIONES CAUSALES. 2.1. La causa. (2) 2.2. Estructuras causales. (5) 2.3. Tipos de causa, tipos de causales. (6) 2.4. Los nexos:

TEMA 2: ÁTOMOS POLIELECTRÓNICOS
TEMA 2: ÁTOMOS POLIELECTRÓNICOS 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Los átomos polielectrónicos. Modelo de la aproximación orbital. Penetración y apantallam

Tema 2: La Ilustración
Tema 2: La Ilustración Unidad 4: La Filosofía Moderna 2 Tema 2: La Ilustración Seguro que has oído expresiones como "no tener luces" como sinónimo

TEMA 2: NUMEROS INDICES
TEMA 2: NUMEROS INDICES 6.1.-Introducción........................................................................................ 1 6.2.-Número índic

Sucesiones Numéricas. Tema 2
Tema 2 Sucesiones Num´ ericas Imaginemos la cola de entrada a un espect´aculo formada por personas que han sido numeradas de la forma habitual; el pr

Story Transcript

TEMA 2  ESTEREOQUÍMICA La estereoquímica es el estudio de las moléculas en tres dimensiones.

Quiralidad vs Aquiralidad Imagen especular original

Molécula original

Molécula quiral: La molécula rotada no puede superponerse a su imagen especular.

Imagen especular original

Molécula aquiral: La molécula rotada se superpone a su imagen especular.

Molécula original

Quiralidad (del griego Cheir que significa mano) es la propiedad que tienen ciertos objetos de poder existir bajo dos formas que son imágenes especulares una de otra y que no se pueden superponer.

Enantiomeros - Diasteroisómeros Los Carbonos que tienen unidos 4 grupos diferentes, se llaman Carbonos Quirales o Asimétricos.  ENANTIÓMEROS: Son estereoisómeros que son imágenes especulares entre sí, no superponibles. Los enantiómeros tienen igual Propiedades Químicas, pero difieren en la Actividad Optica. 

3

Pruebas de Quiralidad: Planos de Simetría

Plano de Simetría

Aquiral

No hay Plano de Simetría

Quiral

Pruebas de Quiralidad: Planos de Simetría

El cis-1,2-diclorociclopentano tiene un plano de simetría especular. Un plano de simetría divide la molécula en dos imágenes especulares internas Cualquier compuesto con un plano de simetría especular interno no puede ser quiral.

Pruebas de Quiralidad: Planos de Simetría

El trans-1,2-diclorociclopentano no tiene plano de simetría especular. Por lo que estos dos compuestos son quirales

Configuración Absoluta

Configuración del estereocentro: R/S Cahn, Ingold y Prelog establecieron el sistema de nomenclatura R/S para nombrar la configuración absoluta de un centro quiral.

En sentido de las agujas del reloj

En sentido contrario a las agujas del reloj

Se deja el grupo de prioridad menor (4) hacia atrás y se observa el sentido de giro para ir desde el grupo de más prioridad (1) hacia el de menor (3) de los tres que quedan. Si el sentido es el de las agujas del reloj, la configuración es R (rectus). Al contrario es S (sinister).

Resumen de las reglas de prelación El número atómico de los átomos directamente unidos al estereocentro determina su orden de prioridad. El átomo de mayor numero atómico tiene la mayor prioridad. Si uno de ellos es un hidrógeno, éste será el de prioridad menor. Si hay dos átomos iguales unidos al estereocentro, se observa en la posición siguiente qué atomo tiene el número atómico mayor. En caso de nueva coincidencia se sigue a la siguiente posición, y así sucesivamente.

Si alguno de los átomos unidos al estereocentro participa en un enlace doble o triple, se supone que aquél está unido por enlaces sencillos a un numero respectivamente doble o triple de átomos.

Mezclas Racémicas

Se denomina mezcla racémica o racemato, cuando un par de enantiómeros están en una proporción del 50% de cada uno. Esta mezcla no produce desviación de la luz polarizada, es decir, no tiene actividad óptica. Una mezcla racémica se simboliza escribiendo (±) o (d,l) antes del nombre del compuesto. Por ejemplo, el 2-butanol racémico se simboliza por (±)-2-butanol o «(d,l)-2-butanol

Moléculas quirales sin estereocentro o centros quirales

Bifenilos

El bifenilo tetrasustituido no puede transformarse en su conformación simétrica porque los átomos de yodo y de bromo son demasiado voluminosos. La molécula está «bloqueada» en una de las dos conformaciones alternadas quirales, enantioméricas

Moléculas quirales sin estereocentro o centros quirales

Alenos

• 2,3-pentadieno, el átomo de carbono central de un aleno tiene hibridación sp y es lineal, mientras que los átomos de carbono de los extremos tienen hibridación sp2 y son trigonales. Los alenos son quirales cuando cada uno de los átomos de carbono tienen al final dos sustituyentes diferentes

Moléculas quirales sin estereocentro o centros quirales Alenos

Bifenilos

Binaftilos

No hay plano de simetría. La molécula y su imagen especular no son superponibles

Ejercicios Asigne la configuración absoluta R o S para cada uno de los siguientes compuestos:

Ejercicios Asigne la configuración absoluta R o S para cada uno de los siguientes compuestos:

R Menor prioridad

Mayor prioridad

R

PROYECCIÓN DE FISCHER

PROYECCIÓN DE FISCHER

orientar

Construir proyección Fischer

Asignar prioridad

Determinar configuración

Si el último grupo en prioridad está en la horizontal y la unión 1→ 2→ 3 va en sentido R la configuración del estereocentro es opuesta, o sea, S

Si el último grupo en prioridad está en la horizontal y la unión 1→ 2→ 3 va en sentido S la configuración del estereocentro es opuesta, o sea, R.

La rotación de una proyección de Fischer afecta a la configuración del estereocentro representado:

El giro de 180º conserva la configuración

atras

Este giro de 180° en el plano en una proyección de Fischer equivale a un número par de intercambios de grupos

La rotación de una proyección de Fischer afecta a la configuración del estereocentro representado:

El giro de 90º invierte la configuración

Un giro de 90° equivale a un número impar de intercambios (un total de tres interconversiones)

Moléculas con más de un centro quiral.  Si una molécula tiene un único carbono quiral, sólo puede existir un par de enantiómeros.  Si tiene dos carbonos quirales tiene un máximo de cuatro estereoisómeros (dos pares de enantiómeros).  En general, una molécula con n carbonos quirales tiene un número máximo de 2n estereoisómeros posibles.

Por ejemplo, el 3-bromo-2-butanol tiene dos carbonos quirales, por lo tanto, se esperaría 4 estereoisómeros.

CH3

OH *CH *CH Br

CH3

Cuantos estereoisómeros son posibles?

Acido dihidroxibutanoico

Acido (2R, 3R)-dihidroxibutanoico

Proyección de Fischer

Cuando Hay dos sustiyentes iguales en la molecula de dos Estereocentros: Diasteroisómero Eritro, los sustituyentes están a un mismo en la Proyc. Fischer.

Diasteroisómero Treo, los sustituyentes están de lados opuestos la Proyc. Fischer.

2R, 3R

2S, 3S

2R, 3S

2S, 3R

Eritro

Treo

H HO

CH3

H3C

OH

C

C

C

C

Br

CH3

H

H3C

Br

(2R, 3S)

(2S, 3R)

H

H

H HO

H Br

H

CH3

H3C

OH

C

C

C

C CH3

(2S, 3S)

H3C

H Br (2R, 3R)

Flechas horizontales: enantiómeros Flechas verticales y oblicuas: diastereoisómeros

3-bromo-2-butanol

Moléculas con más de un centro quiral

Moléculas con más de un centro quiral.

1-bromo-2-chlorocyclopropane

Enantiómeros Diasteroisómeros

Tipos de isómeros.

Entre los estereoisómeros hay enantiómeros, que son imágenes especulares, no superponibles y diastereómeros no son imágenes especulares uno de otro. Los diastereómeros se encuentran en compuestos con dos o más átomos de carbono quirales en la molécula.

Compuestos meso. El 2,3-dibromobutano, ejemplo de un compuesto que tiene cuatro permutaciones de las configuraciones (R) y (S) en C2 y C3 se representan a continuación.

D,l-Treo

Eritro -Meso

Moléculas disimétricas.

los términos eritro y treo se utilizan con moléculas disimétricas, cuyos extremos son diferentes Los términos meso y (+), (-), o (d),(l) se suelen utilizar con moléculas que poseen extremos iguales.

LA FORMA MESO ¿Por qué en el caso del ácido tartárico (ácido 2,3-dihidroxibutanodioico), con dos estereocentros, sólo se producen tres estereoisómeros? (+)-tartaric acid:

[α]D = +12º

m.p. 170 ºC

(–)-tartaric acid:

[α]D = –12º

m.p. 170 ºC

meso-tartaric acid:

[α]D = 0º

m.p. 140 ºC

Compuestos meso.

(+)-tartaric acid:

[α]D = +12º

m.p. 170 ºC

(–)-tartaric acid:

[α]D = –12º

m.p. 170 ºC

meso-tartaric acid:

[α]D = 0º

m.p. 140 ºC

•Una forma meso es un compuesto que contiene dos o más estereocentros y es superponible con su imagen especular. •Los compuesto meso contienen un plano de simetría que divide la molécula en dos, de tal forma que una mitad es la imagen especular de la otra

Compuestos meso.

Get in touch

Social

© Copyright 2013 - 2024 MYDOKUMENT.COM - All rights reserved.